scholarly journals β-Ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths

Microbiology ◽  
2002 ◽  
Vol 148 (12) ◽  
pp. 3849-3856 ◽  
Author(s):  
Tung T. Hoang ◽  
Sarah A. Sullivan ◽  
John K. Cusick ◽  
Herbert P. Schweizer
2001 ◽  
Vol 183 (4) ◽  
pp. 1499-1503 ◽  
Author(s):  
Mark S. Davis ◽  
John E. Cronan

ABSTRACT Escherichia coli acetyl coenzyme A carboxylase (ACC), the first enzyme of the fatty acid biosynthetic pathway, is inhibited by acylated derivatives of acyl carrier protein (ACP). ACP lacking an acyl moiety does not inhibit ACC. Acylated derivatives of ACP having chain lengths of 6 to 20 carbon atoms were similarly inhibitory at physiologically relevant concentrations. The observed feedback inhibition was specific to the protein moiety, as shown by the inability of the palmitoyl thioester of spinach ACP I to inhibit ACC.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Seyi Falekun ◽  
Jaime Sepulveda ◽  
Yasaman Jami-Alahmadi ◽  
Hahnbeom Park ◽  
James A Wohlschlegel ◽  
...  

Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC Complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jonathan G Van Vranken ◽  
Mi-Young Jeong ◽  
Peng Wei ◽  
Yu-Chan Chen ◽  
Steven P Gygi ◽  
...  

Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 674
Author(s):  
Sami Kazaz ◽  
Romane Miray ◽  
Sébastien Baud

Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by ∆9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by ∆9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.


2006 ◽  
Vol 188 (24) ◽  
pp. 8376-8384 ◽  
Author(s):  
Fumiko Taguchi ◽  
Yujiro Ogawa ◽  
Kasumi Takeuchi ◽  
Tomoko Suzuki ◽  
Kazuhiro Toyoda ◽  
...  

ABSTRACT Pseudomonas syringae pv. tabaci 6605 possesses a genetic region involved in flagellin glycosylation. This region is composed of three open reading frames: orf1, orf2, and orf3. Our previous study revealed that orf1 and orf2 encode glycosyltransferases; on the other hand, orf3 has no role in posttranslational modification of flagellin. Although the function of Orf3 remained unclear, an orf3 deletion mutant (Δorf3 mutant) had reduced virulence on tobacco plants. Orf3 shows significant homology to a 3-oxoacyl-(acyl carrier protein) synthase III in the fatty acid elongation cycle. The Δorf3 mutant had a significantly reduced ability to form acyl homoserine lactones (AHLs), which are quorum-sensing molecules, suggesting that Orf3 is required for AHL synthesis. In comparison with the wild-type strain, swarming motility, biosurfactant production, and tolerance to H2O2 and antibiotics were enhanced in the Δorf3 mutant. A scanning electron micrograph of inoculated bacteria on the tobacco leaf surface revealed that there is little extracellular polymeric substance matrix surrounding the cells in the Δorf3 mutant. The phenotypes of the Δorf3 mutant and an AHL synthesis (ΔpsyI) mutant were similar, although the mutant-specific characteristics were more extreme in the Δorf3 mutant. The swarming motility of the Δorf3 mutant was greater than that of the ΔpsyI mutant. This was attributed to the synergistic effects of the overproduction of biosurfactants and/or alternative fatty acid metabolism in the Δorf3 mutant. Furthermore, the amounts of iron and biosurfactant seem to be involved in biofilm development under quorum-sensing regulation in P. syringae pv. tabaci 6605.


1998 ◽  
Vol 180 (10) ◽  
pp. 2644-2651 ◽  
Author(s):  
Dale L. Val ◽  
John E. Cronan

ABSTRACT Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis ofN-(3-oxooctanoyl)homoserine lactone by TraI was unaffected in a fadD mutant blocked in β-oxidative fatty acid degradation. Also, conditions known to induce the fadregulon did not increase autoinducer synthesis. In contrast, cerulenin and diazoborine, specific inhibitors of fatty acid synthesis, both blocked autoinducer synthesis even in a strain dependent on β-oxidative fatty acid degradation for growth. These data provide the first in vivo evidence that the acyl chains in autoinducers synthesized by LuxI-family synthases are derived from acyl-acyl carrier protein substrates rather than acyl coenzyme A substrates. Also, we show that decreased levels of intracellularS-adenosylmethionine caused by expression of bacteriophage T3 S-adenosylmethionine hydrolase result in a marked reduction in autoinducer synthesis, thus providing direct in vivo evidence that the homoserine lactone ring of LuxI-family autoinducers is derived from S-adenosylmethionine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo Cheol Lee ◽  
Sungjae Choi ◽  
Ahjin Jang ◽  
Kkabi Son ◽  
Yangmee Kim

AbstractSome Gram-negative bacteria harbor lipids with aryl polyene (APE) moieties. Biosynthesis gene clusters (BGCs) for APE biosynthesis exhibit striking similarities with fatty acid synthase (FAS) genes. Despite their broad distribution among pathogenic and symbiotic bacteria, the detailed roles of the metabolic products of APE gene clusters are unclear. Here, we determined the crystal structures of the β-ketoacyl-acyl carrier protein (ACP) reductase ApeQ produced by an APE gene cluster from clinically isolated virulent Acinetobacter baumannii in two states (bound and unbound to NADPH). An in vitro visible absorption spectrum assay of the APE polyene moiety revealed that the β-ketoacyl-ACP reductase FabG from the A. baumannii FAS gene cluster cannot be substituted for ApeQ in APE biosynthesis. Comparison with the FabG structure exhibited distinct surface electrostatic potential profiles for ApeQ, suggesting a positively charged arginine patch as the cognate ACP-binding site. Binding modeling for the aryl group predicted that Leu185 (Phe183 in FabG) in ApeQ is responsible for 4-benzoyl moiety recognition. Isothermal titration and arginine patch mutagenesis experiments corroborated these results. These structure–function insights of a unique reductase in the APE BGC in comparison with FAS provide new directions for elucidating host–pathogen interaction mechanisms and novel antibiotics discovery.


Sign in / Sign up

Export Citation Format

Share Document