scholarly journals Acyl–Acyl Carrier Protein Desaturases and Plant Biotic Interactions

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 674
Author(s):  
Sami Kazaz ◽  
Romane Miray ◽  
Sébastien Baud

Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by ∆9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by ∆9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Lei Zhu ◽  
Hongkai Bi ◽  
Jincheng Ma ◽  
Zhe Hu ◽  
Wenbin Zhang ◽  
...  

ABSTRACTEnoyl-acyl carrier protein (enoyl-ACP) reductase catalyzes the last step of the elongation cycle in the synthesis of bacterial fatty acids. TheEnterococcus faecalisgenome contains two genes annotated as enoyl-ACP reductases, a FabI-type enoyl-ACP reductase and a FabK-type enoyl-ACP reductase. We report that expression of either of the two proteins restores growth of anEscherichia colifabItemperature-sensitive mutant strain under nonpermissive conditions.In vitroassays demonstrated that both proteins support fatty acid synthesis and are active with substrates of all fatty acid chain lengths. Although expression ofE. faecalis fabKconfers toE. colihigh levels of resistance to the antimicrobial triclosan, deletion offabKfrom theE. faecalisgenome showed that FabK does not play a detectable role in the inherent triclosan resistance ofE. faecalis. Indeed, FabK seems to play only a minor role in modulating fatty acid composition. Strains carrying a deletion offabKgrow normally without fatty acid supplementation, whereasfabIdeletion mutants make only traces of fatty acids and are unsaturated fatty acid auxotrophs.IMPORTANCEThe finding that exogenous fatty acids support growth ofE. faecalisstrains defective in fatty acid synthesis indicates that inhibitors of fatty acid synthesis are ineffective in counteringE. faecalisinfections because host serum fatty acids support growth of the bacterium.


2014 ◽  
Vol 41 (1) ◽  
pp. 80 ◽  
Author(s):  
Yijun Yuan ◽  
Yinhua Chen ◽  
Shan Yan ◽  
Yuanxue Liang ◽  
Yusheng Zheng ◽  
...  

Coconut (Cocos nucifera L.) contains large amounts of medium chain fatty acids, which mostly recognise acyl-acyl carrier protein (ACP) thioesterases that hydrolyse acyl-ACP into free fatty acids to terminate acyl chain elongation during fatty acid biosynthesis. A full-length cDNA of an acyl-ACP thioesterase, designated CocoFatB1, was isolated from cDNA libraries prepared from coconut endosperm during fruit development. The gene contained an open reading frame of 1254 bp, encoding a 417-amino acid protein. The amino acid sequence of the CocoFatB1 protein showed 100% and 95% sequence similarity to CnFatB1 and oil palm (Elaeis guineensis Jacq.) acyl-ACP thioesterases, respectively. Real-time fluorescent quantitative PCR analysis indicated that the CocoFatB1 transcript was most abundant in the endosperm from 8-month-old coconuts; the leaves and endosperm from 15-month-old coconuts had ~80% and ~10% of this level. The CocoFatB1 coding region was overexpressed in tobacco (Nicotiana tabacum L.) under the control of the seed-specific napin promoter following Agrobacterium tumefaciens-mediated transformation. CocoFatB1 transcript expression varied 20-fold between different transgenic plants, with 21 plants exhibiting detectable levels of CocoFatB1 expression. Analysis of the fatty acid composition of transgenic tobacco seeds showed that the levels of myristic acid (14 : 0), palmitic acid (16 : 0) and stearic acid (18 : 0) were increased by 25%, 34% and 17%, respectively, compared with untransformed plants. These results indicated that CocoFatB1 acts specifically on 14 : 0-ACP, 16 : 0-ACP and 18 : 0-ACP, and can increase medium chain saturated fatty acids. The gene may valuable for engineering fatty acid metabolism in crop improvement programmes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Seyi Falekun ◽  
Jaime Sepulveda ◽  
Yasaman Jami-Alahmadi ◽  
Hahnbeom Park ◽  
James A Wohlschlegel ◽  
...  

Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC Complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.


2016 ◽  
Vol 84 (12) ◽  
pp. 3597-3607 ◽  
Author(s):  
Jiangwei Yao ◽  
Megan E. Ericson ◽  
Matthew W. Frank ◽  
Charles O. Rock

Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogenListeria monocytogenesencode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype ofEscherichia colistrain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate ofL. monocytogenesin laboratory medium. Robust exogenous fatty acid incorporation was not detected inL. monocytogenesunless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth ofL. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth ofL. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth ofL. monocytogenes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jonathan G Van Vranken ◽  
Mi-Young Jeong ◽  
Peng Wei ◽  
Yu-Chan Chen ◽  
Steven P Gygi ◽  
...  

Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis.


2010 ◽  
Vol 76 (12) ◽  
pp. 3959-3966 ◽  
Author(s):  
Yu Du ◽  
Jolyn E. Gisselberg ◽  
Jacob D. Johnson ◽  
Patricia J. Lee ◽  
Sean T. Prigge ◽  
...  

ABSTRACT Plasmodium falciparum, in addition to scavenging essential fatty acids from its intra- and intercellular environments, possesses a functional complement of type II fatty acid synthase (FAS) enzymes targeted to the apicoplast organelle. Recent evidence suggests that products of the plasmodial FAS II system may be critical for the parasite's liver-to-blood cycle transition, and it has been speculated that endogenously generated fatty acids may be precursors for essential cofactors, such as lipoate, in the apicoplast. β-Ketoacyl-acyl carrier protein (ACP) synthase III (pfKASIII or FabH) is one of the key enzymes in the initiating steps of the FAS II pathway, possessing two functions in P. falciparum: the decarboxylative thio-Claisen condensation of malonyl-ACP and various acyl coenzymes A (acyl-CoAs; KAS activity) and the acetyl-CoA:ACP transacylase reaction (ACAT). Here, we report the generation and characterization of a hybrid Lactococcus lactis strain that translates pfKASIII instead of L. lactis f abH to initiate fatty acid biosynthesis. The L. lactis expression vector pMG36e was modified for the efficient overexpression of the plasmodial gene in L. lactis. Transcriptional analysis indicated high-efficiency overexpression, and biochemical KAS and ACAT assays confirm these activities in cell extracts. Phenotypically, the L. lactis strain expressing pfKASIII has a growth rate and fatty acid profiles that are comparable to those of the strain complemented with its endogenous gene, suggesting that pfKASIII can use L. lactis ACP as substrate and perform near-normal function in L. lactis cells. This strain may have potential application as a bacterial model for pfKASIII inhibitor prescreening.


1981 ◽  
Vol 199 (1) ◽  
pp. 221-226 ◽  
Author(s):  
J Sanchez ◽  
J L Harwood

The synthesis of lipids and acyl thioesters was studied in microsomal preparations from germinating pea (Pisum sativum cv. Feltham First) seeds. Under conditions of maximal synthesis (in the presence of exogenous acyl-carrier protein) acyl-acyl-carrier proteins accounted for about half the total incorporation from [14C]malonyl-CoA. Decreasing the concentrations of exogenous acyl-carrier protein lowered the overall synthesis of fatty acids by decreasing, almost exclusively, the radioactivity associated with acyl-acyl-carrier proteins. A time-course experiment showed that acyl-acyl-carrier proteins accumulated most of the radioactive label at the beginning of the incubation but, eventually, the amount of radioactivity in that fraction decreased, while a simultaneous increase in the acyl-CoA and lipid fractions was noticed. Addition of exogenous CoA (1 mM) produced a decrease of total incorporation, but an increase in the radioactivity incorporated into acyl-CoA. The microsomal preparations synthesized saturated fatty acids up to C20, including significant proportions of pentadecanoic acid and heptadecanoic acid. Synthesis of these ‘odd-chain’ fatty acids only took place in the microsomal fraction. In contrast, when the 18,000g supernatant (containing the microsomal and soluble fractions) was incubated with [14C]malonyl-CoA, the radioactive fatty acid and acyl classes closely resembled the patterns produced by germinating in the presence of [14C]acetate in vivo. The results are discussed in relation to the role of acyl thioesters in the biosynthesis of plant lipids.


1975 ◽  
Vol 146 (2) ◽  
pp. 439-445 ◽  
Author(s):  
P J Weaire ◽  
R G O Kekwick

1. The range of fatty acids formed by preparations of ultrasonically ruptured avocado mesocarp plastids was dependent on the substrate. Whereas [1-14C]palmitate and [14C]oleate were the major products obtained from [-14C]acetate and [1-14C]acetyl-CoA, the principal product from [2-14C]malonyl-CoA was [14-C]stearate. 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate. The incorporation of [1-14C]acetate into stearate by this fraction was inhibited by avidin. 3. The 105000g precipitate of the disrupted plastids incorporated [1-14C]acetate into a mixture of fatty acids that contained largely [14C]plamitate and [14C]oleate. The formation of [14C]palmitate and [14C]oleate by disrupted plastids was unaffected by avidin. 4. The soluble fatty acid synthetase was precipitated from the 105000g supernatant in the 35-65%-saturated-(NH4)2SO4 fraction and showed an absolute requirement for acyl-carrier protein. 5. Both fractions synthesized fatty acids de novo.


2005 ◽  
Vol 187 (11) ◽  
pp. 3795-3799 ◽  
Author(s):  
Yongli Li ◽  
Galina Florova ◽  
Kevin A. Reynolds

ABSTRACT The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (∼70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a ΔfabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.


Sign in / Sign up

Export Citation Format

Share Document