scholarly journals Cell surface lipid composition and hydrophobicity governs tuberculosis evolution and pathogenicity

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
David Minnikin

The evolution of tubercle bacilli correlates closely with changes in cell envelope surface lipid composition (Donoghue et al. Diversity 2017, 9:46; Jankute et al. Scientific Reports 2017, 7:1315). Smooth, hydrophilic “Mycobacterium canettii” is the first recognisable member of the Mycobacterium tuberculosis complex, but it has reduced pathogenicity and poor aerosol transmission. In contrast, rough M. tuberculosis is very hydrophobic and readily spread in aerosols. Starting from hydrophilic surface lipids in environmental Mycobacterium kansasii, intermediate “M. canettii” adds hydrophobic lipids but retains overall cell hydrophilicity. Eliminating hydrophilic lipooligosaccharides (LOSs) and phenolic glycolipids (PGLs) from “M. canettii” leads to M. tuberculosis with a refined selection of hydrophobic lipids, namely phthiocerol dimycocerosates (PDIMs), pentaacyl trehaloses (PATs) and sulfoglycolipids (SGLs). The relative hydrophobicity of M. tuberculosis is double that of representatives of M. kansasii and “M. canettii”. The above changes have implications both for the onset of tuberculosis and pinpointing evolutionary hosts. Tuberculosis has not been found in Homo sapiens during the Late Pleistocene, but megafauna are the most likely hosts; characteristic bone lesions have been validated by TB DNA amplification and lipid biomarkers in bison metacarpals up to 17,000 years old. Late Pleistocene enhanced TB hydrophobicity and aerosolisation may have produced megafaunal pandemics, with extinction of bison, mastodons and contemporary taxa. The oldest H. sapiens tuberculosis is from the “Fertile Crescent” back to 9-11ka BP at the start of the Holocene. Naïve humans arriving “Out of Africa” may have encountered newly virulent tubercle bacilli of megafaunal origin, recently refined through a distinct “bottleneck”.

Author(s):  
Francisco J. Ayala ◽  
Camilo J. Cela-Conde

This chapter analyzes the transition of the hominins from the Middle Pleistocene to the Late Pleistocene. Two alternative models are explored, the “Multiregional Hypothesis” (MH) and the “Replacement Hypothesis,” and how each model evaluates the existing relationships between the taxa Homo neanderthalensis and Homo sapiens. Next is the investigation of the transitional (or “archaic,” if this grade is taken into account) exemplars found in Europe, Africa, and Asia and their evolutionary significance. In particular, the comparison between H. erectus and H. sapiens in China and Java is investigated, as the main foundation of the MH. The chapter ends with the surprising discovery of Homo floresiensis and its description and interpretations concerning its taxonomic and phylogenetic significance. The correlation between brain development and technological progress is at odds with the attribution of perforators, microblades, and fishing hooks to a hominin with a small cranial volume, similar to that of Australopithecus afarensis.


Author(s):  
Tony Hallam

We saw in Chapters 5 and 7 that the Quaternary was a time of low extinction rates despite a succession of strong environmental changes induced ultimately by climate. This began to change from a few tens of thousands of years ago with the arrival on our planet of Homo sapiens sapiens, which can be translated from the Latin as the rather smug ‘ultrawise Man’. It is widely accepted today that the Earth is undergoing a loss of species on a scale that would certainly rank in geological terms as a catastrophe, and has indeed, been dubbed ‘the sixth mass extinction’. Although the disturbance to the biosphere being created in modern times is more or less entirely attributable to human activity, we must use the best information available from historical, archaeological, and geological records to attempt to determine just when it began. Towards the end of the last ice age, known in Europe as the Würm and in North America as the Wisconsin, the continents were much richer in large mammals than today: for example, there were mammoths, mastodonts, and giant ground sloths in the Americas; woolly mammoths, elephants, rhinos, giant deer, bison, and hippos in northern Eurasia; and giant marsupials in Australia. Outside Africa most genera of large mammals, defined as exceeding 44 kilograms adult weight, disappeared within the past 100,000 years, an increasing number becoming extinct towards the end of that period. This indicates that there was a significant extinction event near the end of the Pleistocene. This event was not simultaneous across the world, however: it took place later in the Americas than Australia, and Africa and Asia have suffered fewer extinctions than other continents. There are three reasons for citing humans as the main reason for the late Pleistocene extinctions. First, the extinctions follow the appearance of humans in various parts of the world. Very few of the megafaunal extinctions that took place in the late Pleistocene can definitely be shown to pre-date the arrival of humans. There has, on the other hand, been a sequence of extinctions following human dispersal, culminating most recently on oceanic islands. Second, it was generally only large mammals that became extinct.


The Lancet ◽  
1971 ◽  
Vol 297 (7712) ◽  
pp. 1271-1272 ◽  
Author(s):  
J.A. Cotterill ◽  
W.J. Cunliffe ◽  
B. Williamson ◽  
W.A. Arrowsmith ◽  
J.B. Cook ◽  
...  

1993 ◽  
Vol 39 (7) ◽  
pp. 665-673 ◽  
Author(s):  
John J. Dooley ◽  
Stephen P. Harrison ◽  
Lance R. Mytton ◽  
Malcolm Dye ◽  
Ann Cresswell ◽  
...  

Through the use of a single, random 15mer as a primer, between 1 and 12 DNA amplification products were obtained per strain from a selection of 84 Rhizobium and Bradyrhizobium isolates. A principal-coordinate analysis was used to analyse the resulting amplified DNA profiles and it was possible to assign isolates to specific groupings. Within the species Rhizobium leguminosarum, the biovar phaseoli formed a distinct group from the other biovars of the species, viciae and trifolii, which grouped together. Isolates of Rhizobium meliloti and Bradyrhizobium species formed their own clear, specific groups. Although it was possible to identify individual isolates on the basis of differences in their amplified DNA profiles, there was evidence that some amplified segments were conserved among individuals at the biovar and species levels.Key words: Rhizobium, DNA amplification, random primers.


Sign in / Sign up

Export Citation Format

Share Document