scholarly journals Lysinibacillus acetophenoni sp. nov., a solvent-tolerant bacterium isolated from acetophenone

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1741-1748 ◽  
Author(s):  
M. Azmatunnisa ◽  
K. Rahul ◽  
K. V. N. S. Lakshmi ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

A Gram-stain-positive, solvent-tolerating, aerobic, rod-shaped bacterium that formed terminal endospores was isolated from the organic solvent acetophenone. The strain, designated JC23T, was oxidase- and catalase-positive. The strain grew in the presence of a wide range of organic solvents with partition coefficients (log p values) between 1 and 4, which are exceptionally toxic to micro-organisms. Based on 16S rRNA gene sequence analysis, strain JC23T was identified as belonging to the genus Lysinibacillus and was most closely related to Lysinibacillus manganicus Mn1-7T (98.5 % similarity), L. massiliensis 440831T (97.2 %) and L. chungkukjangi 2RL3-2T (96.8 %). DNA–DNA relatedness of strain JC23T with the type strains of the closest species was <39 %. Strain JC23T grew chemo-organoheterotrophically with optimal growth at pH 7 (range pH 6–9) and at 35 °C (range 25–40 °C). The DNA G+C content was 41 mol%. Major cellular fatty acids of strain JC23T were iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The cell-wall peptidoglycan type was determined to be A4α (l-Lys–d-Asp), which is in agreement with the cell-wall characteristics of the genus Lysinibacillus . The predominant quinone system was MK-7. Polar lipids of strain JC23T included diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, β-gentiobiosyldiacylglycerol, two unidentified phospholipids and two unidentified lipids. On the basis of our morphological, physiological, genetic, phylogenetic and chemotaxonomic analyses, we conclude that strain JC23T should be assigned to a novel species of the genus Lysinibacillus , for which the name Lysinibacillus acetophenoni sp. nov. is proposed. The type strain is strain JC23T ( = CCUG 57911T = KCTC 13605T = NBRC 105754T = DSM 23394T).

2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2011-2017 ◽  
Author(s):  
Anil Sazak ◽  
Mustafa Camas ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Nevzat Sahin

A novel actinobacterium, strain A8036T, isolated from soil, was investigated by using a polyphasic taxonomic approach. The organism formed extensively branched substrate hyphae that generated spiral chains of spores with irregular surfaces. The cell wall contained meso-diaminopimelic acid (type III) and cell-wall sugars were glucose, madurose, mannose and ribose. The predominant menaquinones were MK-9(H6) and MK-9(H4). The phospholipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major cellular fatty acids were iso-C16 : 0, C17 : 1 cis9, C16 : 0, C15 : 0 and 10-methyl C17 : 0. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain A8036T were Actinomadura meyerae DSM 44715T (99.23 % similarity), Actinomadura bangladeshensis DSM 45347T (98.9 %) and Actinomadura chokoriensis DSM 45346T (98.3 %). However, DNA–DNA relatedness and phenotypic data demonstrated that strain A8036T could be clearly distinguished from the type strains of all closely related Actinomadura species. Strain A8036T is therefore considered to represent a novel species of the genus Actinomadura , for which the name Actinomadura geliboluensis sp. nov. is proposed. The type strain is A8036T ( = DSM 45508T = KCTC 19868T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 954-959 ◽  
Author(s):  
Xianbo Chang ◽  
Wenzheng Liu ◽  
Xiao-Hua Zhang

A novel halophilic, filamentous, actinomycete strain, designated CXB832T, was isolated from a salt pond in Qingdao, China. Optimal growth occurred at 37 °C, pH 7.0–8.0 and 9–12 % (w/v) NaCl. Strain CXB832T formed pale yellow to deep yellow branched substrate mycelium without fragmentation. Abundant white aerial mycelium differentiated into long chains of spores and the spores were rod-shaped with smooth surfaces. Strain CXB832T contained meso-diaminopimelic acid as the diagnostic diamino acid of the cell-wall peptidoglycan, and glucose and xylose as the major whole-cell sugars. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipids, glycolipid and unidentified lipids. MK-10(H8), MK-9(H8), MK-10(H2) and MK-10(H6) were the predominant menaquinones. The major fatty acids were i-C16 : 0 (30.71 %), ai-C17 : 0 (13.31 %) and C16 : 0 (11.28 %). The G+C content of the DNA was 60.1 mol%. Comparative analysis of 16S rRNA gene sequences showed that the novel strain was most closely related to genera within the family Nocardiopsaceae , but formed a separate lineage. The highest sequence similarities were to Nocardiopsis arabia DSM 45083T (95.4 %) and Haloactinospora alba DSM 45015T (94.9 %). On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain CXB832T represents a new genus and novel species in the family Nocardiopsaceae , for which the name Salinactinospora qingdaonensis gen. nov., sp. nov. is proposed. The type strain of the type species is CXB832T ( = DSM 45442T = LMG 25567T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3478-3484 ◽  
Author(s):  
Lars Ganzert ◽  
Janosch Schirmack ◽  
Mashal Alawi ◽  
Kai Mangelsdorf ◽  
Wolfgang Sand ◽  
...  

A novel methanogenic archaeon, strain MC-15T, was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2–4 µm, occurring in aggregates. The strain was able to grow autotrophically on H2/CO2. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15T were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, Methanosarcina vacuolata and Methanosarcina horonobensis, had a similar composition of major membrane lipids to strain MC-15T. The 16S rRNA gene sequence of strain MC-15T was similar to those of Methanosarcina vacuolata DSM 1232T (sequence similarity 99.3 %), Methanosarcina horonobensis HB-1T (98.8 %), Methanosarcina barkeri DSM 800T (98.7 %) and Methanosarcina siciliae T4/MT (98.4 %). DNA–DNA hybridization revealed 43.3 % relatedness between strain MC-15T and Methanosarcina vacuolata DSM 1232T. The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15T represents a novel species of the genus Methanosarcina , for which the name Methanosarcina spelaei sp. nov. is proposed. The type strain is MC-15T ( = DSM 26047T = JCM 18469T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2274-2279 ◽  
Author(s):  
Cheol Su Park ◽  
Kyudong Han ◽  
Tae-Young Ahn

A Gram-staining-negative, strictly aerobic, rod-shaped, pale-pink pigmented bacterial strain, designated TF8T, was isolated from leaf mould in Cheonan, Republic of Korea. Its taxonomic position was determined through a polyphasic approach. Optimal growth occurred on R2A agar without NaCl supplementation, at 25–28 °C and at pH 6.0–7.0. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TF8T belongs to the genus Mucilaginibacter in the family Sphingobacteriaceae . The sequence similarity between 16S rRNA genes of strain TF8T and the type strains of other species of the genus Mucilaginibacter ranged from 92.1 to 94.7 %. The closest relatives of strain TF8T were Mucilaginibacter lutimaris BR-3T (94.7 %), M. soli R9-65T (94.5 %), M. litoreus BR-18T (94.5 %), M. rigui WPCB133T (94.0 %) and M. daejeonensis Jip 10T (93.8 %). The major isoprenoid quinone was MK-7 and the major cellular fatty acids were iso-C15 : 0 (33.0 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 24.8 %) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 13.0 %). The major polar lipids of TF8T were phosphatidylethanolamine and three unidentified aminophospholipids. The G+C content of the genomic DNA was 46.2 mol%. On the basis of the data presented here, strain TF8T is considered to represent a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter koreensis sp. nov. is proposed. The type strain is TF8T ( = KACC 17468T = JCM 19323T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2724-2730 ◽  
Author(s):  
Peter Schumann ◽  
De-Chao Zhang ◽  
Mersiha Redzic ◽  
Rosa Margesin

A Gram-type positive, Gram-reaction variable, non-motile, psychrophilic actinobacterium, designated Cr8-25T, was isolated from alpine glacier cryoconite and was able to grow well over a temperature range of 1–15 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Cr8-25T belonged to the family Microbacteriaceae and showed highest 16S rRNA gene sequence similarity with Klugiella xanthotipulae 44C3T (97.0 %). However, strain Cr8-25T could be differentiated from the type strain of K. xanthotipulae on the level of genomospecies by a DNA–DNA relatedness value of only 37.2 %. Strain Cr8-25T contained a cell-wall peptidoglycan that was cross-linked according to the B-type, which is based on 2,4-diaminobutyric acid. The cell wall contained the sugars galactose, fucose and rhamnose. The predominant cellular fatty acids of strain Cr8-25T were C15 : 0 anteiso (64.6 %) and iso-C16 : 0 (22.5 %) and the major menaquinones were MK-11 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and unknown glycolipids. The G+C content of the genomic DNA was 58.8 mol%. On the basis of the phenotypic characteristics, phylogenetic and chemotaxonomic analyses and DNA–DNA relatedness data, strain Cr8-25T represents a novel species of a new genus in the family Microbacteriaceae , for which the name Alpinimonas psychrophila gen. nov., sp. nov. is proposed. The type strain is Cr8-25T ( = DSM 23737T = LMG 26215T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3427-3433 ◽  
Author(s):  
Om Prakash ◽  
Yogesh Nimonkar ◽  
Hitendra Munot ◽  
Avinash Sharma ◽  
Venkata Ramana Vemuluri ◽  
...  

A yellow Gram-stain-positive, non-motile, non-endospore -forming, spherical endophytic actinobacterium, designated strain AE-6T, was isolated from the inner fleshy leaf tissues of Aloe barbadensis (Aloe vera) collected from Pune, Maharashtra, India. Strain AE-6T grew at high salt concentrations [10 % (w/v) NaCl], temperatures of 15–41 °C and a pH range of 5–12. It showed highest (99.7 %) 16S rRNA gene sequence similarity with Micrococcus yunnanensis YIM 65004T followed by Micrococcus luteus NCTC 2665T (99.6 %) and Micrococcus endophyticus YIM 56238T (99.0 %). Ribosomal protein profiling by MALDI-TOF/MS also showed it was most closely related to M. yunnanensis YIM 65004T and M. luteus NCTC 2665T. Like other members of the genus Micrococcus , strain AE-6T had a high content of branched chain fatty acids (iso-C15 : 0 and anteiso-C15 : 0). MK-8(H2) and MK-8 were the predominant isoprenoid quinones. Cell wall analysis showed an ‘A2 l-Lys-peptide subunit’ type of peptidoglycan and ribose to be the major cell wall sugar. The DNA G+C content was 70 mol%. Results of DNA–DNA hybridization of AE-6T with its closest relatives from the genus Micrococcus produced a value of less than 70%. Based on the results of this study, strain AE-6T could be clearly differentiated from other members of the genus Micrococcus . We propose that it represents a novel species of the genus Micrococcus and suggest the name Micrococcus aloeverae sp. nov., with strain AE-6T ( = MCC 2184T = DSM 27472T) as the type strain of the species.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3546-3552 ◽  
Author(s):  
Fernando Puente-Sánchez ◽  
Mónica Sánchez-Román ◽  
Ricardo Amils ◽  
Víctor Parro

A novel actinobacterium, designated IPBSL-7T, was isolated from a drilling core 297 m deep obtained from the Iberian Pyrite Belt. The strain was isolated anaerobically using nitrate as the electron acceptor. 16S rRNA gene sequence analysis revealed that it was related to Tessaracoccus flavescens SST-39T (95.7 % similarity), Tessaracoccus bendigoensis Ben 106T (95.7 %), Tessaracoccus lubricantis KSS-17SeT (95.6 %) and Tessaracoccus oleiagri SL014B-20A1T (95.0 %), while its similarity to any other member of the family Propionibacteriaceae was less than 94 %. Cells were non-motile, non-spore-forming, Gram-positive, oval to rod-shaped, and often appeared in pairs or small groups. The strain was facultatively anaerobic, oxidase-negative, catalase-positive and capable of reducing nitrate. Colonies were circular, convex, smooth and colourless. The organism could grow at between 15 and 40 °C, with an optimal growth at 37 °C. The pH range for growth was from pH 6 to 9, with pH 8 being the optimal value. Strain IPBSL-7T had peptidoglycan type A3-γ′, with ll-diaminopimelic acid as the diagnostic diamino-acid and glycine at position 1 of the peptide subunit. The dominant menaquinone was MK-9(H4) (93.8 %). The major cellular fatty acid was anteiso-C15 : 0 (55.0 %). The DNA G+C content was 70.3 mol%. On the basis of phenotypic and phylogenetic results, strain IPBSL-7T can be differentiated from previously described species of the genus Tessaracoccus and, therefore, represents a novel species, for which the name Tessaracoccus lapidicaptus sp. nov. is proposed. The type strain is IPBSL-7T ( = CECT 8385T = DSM 27266T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3568-3573 ◽  
Author(s):  
Hongliang Liu ◽  
Yumei Song ◽  
Fang Chen ◽  
Shixue Zheng ◽  
Gejiao Wang

A Gram-stain-positive, aerobic, motile, rod-shaped bacterium, designated strain Mn1-7T, was isolated from manganese mining soil in Tianjin, China. The closest phylogenetic relatives were Lysinibacillus massiliensis CCUG 49529T (97.2 % 16S rRNA gene sequence similarity), L. xylanilyticus XDB9T (96.7 %), L. sinduriensis JCM 15800T (96.2 %), L. odysseyi NBRC 100172T (95.9 %) and L. boronitolerans NBRC 103108T (95.4 %) (the type species of the genus). DNA–DNA hybridization values for strain Mn1-7T with the type strains of L. massiliensis and L. sinduriensis were 24.9 and 27.7 %, respectively. The genomic DNA G+C content was 38.4 mol%. The major menaquinone was MK-7 and the major fatty acids were iso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The cell-wall peptidoglycan was type A4α (l-Lys–d-Asp), and the predominant cell-wall sugar was xylose. DNA–DNA hybridization results and comparison of phenotypic and chemotaxonomic characters between strain Mn1-7T and the phylogenetically most closely related strains revealed that the isolate represents a novel species of the genus Lysinibacillus , for which the name Lysinibacillus manganicus sp. nov. is proposed. The type strain is Mn1-7T ( = DSM 26584T = CCTCC AB 2012916T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 556-561 ◽  
Author(s):  
Wayne L. Nicholson ◽  
Kateryna Zhalnina ◽  
Rafael R. de Oliveira ◽  
Eric W. Triplett

A novel, psychrotolerant facultative anaerobe, strain WN1359T, was isolated from a permafrost borehole sample collected at the right bank of the Kolyma River in Siberia, Russia. Gram-positive-staining, non-motile, rod-shaped cells were observed with sizes of 1–2 µm long and 0.4–0.5 µm wide. Growth occurred in the range of pH 5.8–9.0 with optimal growth at pH 7.8–8.6 (pH optimum 8.2). The novel isolate grew at temperatures from 0–37 °C and optimal growth occurred at 25 °C. The novel isolate does not require NaCl; growth was observed between 0 and 8.8 % (1.5 M) NaCl with optimal growth at 0.5 % (w/v) NaCl. The isolate was a catalase-negative, facultatively anaerobic chemo-organoheterotroph that used sugars but not several single amino acids or dipeptides as substrates. The major metabolic end-product was lactic acid in the ratio of 86 % l-lactate : 14 % d-lactate. Strain WN1359T was sensitive to ampicillin, chloramphenicol, fusidic acid, lincomycin, monocycline, rifampicin, rifamycin SV, spectinomycin, streptomycin, troleandomycin and vancomycin, and resistant to nalidixic acid and aztreonam. The fatty acid content was predominantly unsaturated (70.2 %), branched-chain unsaturated (11.7 %) and saturated (12.5 %). The DNA G+C content was 35.3 mol% by whole genome sequence analysis. 16S rRNA gene sequence analysis showed 98.7 % sequence identity between strain WN1359T and Carnobacterium inhibens . Genome relatedness was computed using both Genome-to-Genome Distance Analysis (GGDA) and Average Nucleotide Identity (ANI), which both strongly supported strain WN1359T belonging to the species C. inhibens . On the basis of these results, the permafrost isolate WN1359T represents a novel subspecies of C. inhibens , for which the name Carnobacterium inhibens subsp. gilichinskyi subsp. nov. is proposed. The type strain is WN1359T ( = ATCC BAA-2557T = DSM 27470T). The subspecies Carnobacterium inhibens subsp. inhibens subsp. nov. is created automatically. An emended description of C. inhibens is also provided.


Sign in / Sign up

Export Citation Format

Share Document