scholarly journals Methylorosula polaris gen. nov., sp. nov., an aerobic, facultatively methylotrophic psychrotolerant bacterium from tundra wetland soil

2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 638-646 ◽  
Author(s):  
Julia Ju. Berestovskaya ◽  
Oleg R. Kotsyurbenko ◽  
Tatyana P. Tourova ◽  
Tatyana V. Kolganova ◽  
Nina V. Doronina ◽  
...  

Three strains of Gram-negative, aerobic, motile bacteria with bipolar flagella were isolated from acidic tundra wetland soils near the city of Vorkuta and from the Chukotka and Yugorsky Peninsulas and designated strains V-022T, Ch-022 and Ju-022. The cells were rod-shaped, 0.5–0.6 µm in width and 1.3–4.5 µm in length and reproduced by irregular fission. These bacteria were facultative methylotrophs that used methanol, methylamines and a wide range of other sources of carbon and energy such as sugars and polysaccharides, ethanol and amino acids. The isolates used the Calvin–Benson pathway for the assimilation of one-carbon compounds and were unable to fix nitrogen. The new strains were moderately acidophilic and psychrotolerant, capable of growth over a pH range of 4.0 to 7.8, with optimum growth at pH 5.5–6.0. Growth occurred between 4 and 30 °C (optimum 20–25 °C). The principal phospholipid fatty acid was C18 : 1ω7c. The DNA G+C content of strain V-022T was 65.2 mol%. Analysis of the 16S rRNA gene sequences revealed that all three isolates V-022T, Ch-022 and Yu-022 exhibited almost identical 16S rRNA gene sequences (99.9 % gene sequence similarity) and formed a new lineage within the class Alphaproteobacteria. The name Methylorosula polaris is suggested to accommodate this new genus and novel species with strain V-022T ( = DSM 22001T = VKM V-2485T) as the type strain of the type species.

2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1442-1447 ◽  
Author(s):  
Hideyuki Tamaki ◽  
Yasuhiro Tanaka ◽  
Hiroaki Matsuzawa ◽  
Mizuho Muramatsu ◽  
Xian-Ying Meng ◽  
...  

A novel aerobic, chemoheterotrophic bacterium, strain YO-36T, isolated from the rhizoplane of an aquatic plant (a reed, Phragmites australis) inhabiting a freshwater lake in Japan, was morphologically, physiologically and phylogenetically characterized. Strain YO-36T was Gram-negative and ovoid to rod-shaped, and formed pinkish hard colonies on agar plates. Strain YO-36T grew at 20–40 °C with optimum growth at 30–35 °C, whilst no growth was observed at 15 °C or 45 °C. The pH range for growth was 5.5–8.5 with an optimum at pH 6.5. Strain YO-36T utilized a limited range of substrates, such as sucrose, gentiobiose, pectin, gellan gum and xanthan gum. The strain contained C16 : 0, C16 : 1, C14 : 0 and C15 : 0 as the major cellular fatty acids and menaquinone-12 as the respiratory quinone. The G+C content of the genomic DNA was 62.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YO-36T belonged to the candidate phylum OP10 comprised solely of environmental 16S rRNA gene clone sequences except for two strains, P488 and T49 isolated from geothermal soil in New Zealand; strain YO-36T showed less than 80 % sequence similarity to strains P488 and T47. Based on the phylogetic and phenotypic findings, a new genus and species, Armatimonas rosea gen. nov., sp. nov., is proposed for the isolate (type strain YO-36T  = NBRC 105658T  = DSM 23562T). In addition, a new bacterial phylum named Armatimonadetes phyl. nov. is proposed for the candidate phylum OP10 represented by A. rosea gen. nov., sp. nov. and Armatimonadaceae fam. nov., Armatimonadales ord. nov., and Armatimonadia classis nov.


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2004 ◽  
Vol 70 (12) ◽  
pp. 7053-7065 ◽  
Author(s):  
George Y. Matsui ◽  
David B. Ringelberg ◽  
Charles R. Lovell

ABSTRACT Marine infaunal burrows and tubes greatly enhance solute transport between sediments and the overlying water column and are sites of elevated microbial activity. Biotic and abiotic controls of the compositions and activities of burrow and tube microbial communities are poorly understood. The microbial communities in tubes of the marine infaunal polychaete Diopatria cuprea collected from two different sediment habitats were examined. The bacterial communities in the tubes from a sandy sediment differed from those in the tubes from a muddy sediment. The difference in community structure also extended to the sulfate-reducing bacterial (SRB) assemblage, although it was not as pronounced for this functional group of species. PCR-amplified 16S rRNA gene sequences recovered from Diopatra tube SRB by clonal library construction and screening were all related to the family Desulfobacteriaceae. This finding was supported by phospholipid fatty acid analysis and by hybridization of 16S rRNA probes specific for members of the genera Desulfosarcina, Desulfobacter, Desulfobacterium, Desulfobotulus, Desulfococcus, and Desulfovibrio and some members of the genera Desulfomonas, Desulfuromonas, and Desulfomicrobium with 16S rRNA gene sequences resolved by denaturing gradient gel electrophoresis. Two of six SRB clones from the clone library were not detected in tubes from the sandy sediment. The habitat in which the D. cuprea tubes were constructed had a strong influence on the tube bacterial community as a whole, as well as on the SRB assemblage.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2007 ◽  
Vol 74 (4) ◽  
pp. 942-949 ◽  
Author(s):  
M. Kozubal ◽  
R. E. Macur ◽  
S. Korf ◽  
W. P. Taylor ◽  
G. G. Ackerman ◽  
...  

ABSTRACT Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP.


Author(s):  
Samantha E. Wirth ◽  
Héctor L. Ayala-del-Río ◽  
Jocelyn A. Cole ◽  
Donna J. Kohlerschmidt ◽  
Kimberlee A. Musser ◽  
...  

An analysis of 16S rRNA gene sequences from archived clinical reference specimens identified a novel species of the genus Psychrobacter, of which four strains have been independently isolated from human blood. On the basis of 16S rRNA gene sequence similarity, the closest relatives with validly published names were Psychrobacter arenosus R7T (98.7 %), P. pulmonis CECT 5989T (97.7 %), P. faecalis Iso-46T (97.6 %) and P. lutiphocae IMMIB L-1110T (97.2 %). Maximum-likelihood phylogenetic analysis of 16S rRNA gene sequences showed that the isolates belonged to the genus Psychrobacter and were members of a cluster associated with Psychrobacter sp. PRwf-1, isolated from a silk snapper fish. DNA–DNA relatedness and partial 23S rRNA gene sequences also supported the finding that the isolates belonged to a species distinct from its closest phylogenetic neighbours. The predominant cellular fatty acids were C18 : 1ω9c, C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), summed feature 5 (C18 : 2ω6,9c and/or anteiso-C18 : 0) and C18 : 0. Biochemical and morphological analysis further supported the assignment of the four isolates to a novel species. The name Psychrobacter sanguinis sp. nov. is proposed. The type strain is 13983T ( = DSM 23635T = CCUG 59771T).


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Author(s):  
Huibin Lu ◽  
Zhipeng Cai ◽  
Tongchu Deng ◽  
Youfeng Qian ◽  
Meiying Xu

Two Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, non-flagellated, non-spore-forming and non-motile strains (YJ13CT and H41T) were isolated from a mariculture fishpond in PR China. Comparisons based on 16S rRNA gene sequences indicated that YJ13CT and H41T shared 16S rRNA gene sequences similarities between 92.6 and 99.2 % with species of the genus Algoriphagus . YJ13CT only shared 93.8 % 16S rRNA gene sequence similarity with H41T. The reconstructed phylogenetic and phylogenomic trees indicated that YJ13CT and H41T clustered closely with species of the genus Algoriphagus . The calculated pairwise orthologous average nucleotide identity with usearch (OrthoANIu) values between strains YJ13CT and H41T and other related strains were all less than 79.5 %. The OrthoANIu value between YJ13CT and H41T was only 69.9 %. MK-7 was the predominant respiratory quinone of YJ13CT and H41T and their major cellular fatty acids contained iso-C15 : 0, C16 : 1 ω7c and C17 : 1 ω9c. The polar lipids profiles of YJ13CT and H41T consisted of phosphatidylethanolamine and several kinds of unidentified lipids. Combining the above descriptions, strains YJ13CT and H41T represent two distinct novel species of the genus Algoriphagus , for which the names Algoriphagus pacificus sp. nov. (type strain YJ13CT=GDMCC 1.2178T=KCTC 82450T) and Algoriphagus oliviformis sp. nov. (type strain H41T=GDMCC 1.2179T=KCTC 82451T) are proposed.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 937-941 ◽  
Author(s):  
Hui Xu ◽  
Yuanyuan Fu ◽  
Ning Yang ◽  
Zhixin Ding ◽  
Qiliang Lai ◽  
...  

Strain WPAGA1T was isolated from marine sediment of the west Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Flammeovirga . Strain WPAGA1T exhibited highest 16S rRNA gene sequence similarity with Flammeovirga yaeyamensis NBRC 100898T (98.1 %) and lower sequence similarity with Flammeovirga arenaria IFO 15982T (94.6 %) and other members of the genus Flammeovirga (<94.2 %). DNA–DNA relatedness studies showed that strain WPAGA1T was distinct from F. yaeyamensis NBRC 100898T and F. arenaria NBRC 15982T (43±4 % and 32±2 % relatedness values, respectively). Strain WPAGA1T could be distinguished from all known members of the genus Flammeovirga by a number of phenotypic features. However, the dominant fatty acids of strain WPAGA1T (iso-C15 : 0, C16 : 0 and C20 : 4ω6,9,12,15c), the major polyamine (cadaverine) and the G+C content of the chromosomal DNA (32.9 mol%) were consistent with those of members of the genus Flammeovirga . Based on phenotypic and chemotaxonomic features and 16S rRNA gene sequences, strain WPAGA1T can be assigned to the genus Flammeovirga as a representative of a novel species, for which the name Flammeovirga pacifica sp. nov. is proposed; the type strain is WPAGA1T ( = CCTCC AB 2010364T = LMG 26175T = DSM 24597T = MCCC 1A06425T).


Sign in / Sign up

Export Citation Format

Share Document