scholarly journals Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi

2010 ◽  
Vol 60 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Vernans V. Bautista ◽  
Rosario G. Monsalud ◽  
Akira Yokota

A Gram-negative, strictly aerobic bacterium, comprising non-endospore-forming motile rods (1.2–2.0 μm × 0.4–0.6 μm) with polar flagellae was isolated from root nodules of the leguminous plant Pueraria lobata (Willd.) Ohwi growing on the coast of Yakushima Island, Kagoshima Prefecture, Japan. The novel strain, designated Yak96BT, grew at an optimum pH of 7.0 and an optimum temperature of 28 °C. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the new strain was closely related to Devosia neptuniae J1T and Devosia chinhatensis IPL18T, with sequence similarities of 98.1 % and 97.8 %, respectively. However, the DNA–DNA relatedness values of strain Yak96BT with D. neptuniae LMG 21357T and D. chinhatensis CCM 7426T were 53.6 % and 34 %, respectively. The DNA G+C content of strain Yak96BT was 65.3 mol%, the predominant isoprenoid quinone was Q10 (85 %) and the polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids (>5 %) were 11-methyl C18 : 1 ω7c (35.0 %), C16 : 0 (22.4 %), C18 : 1 ω7c (21.8 %), C19 : 0 cyclo ω8c (6.8 %) and C18 : 0 (5.4 %). The infection/nodulation test was negative and nifH and nodD genes were not detected. Based on its chemotaxonomic and physiological characteristics, strain Yak96BT represents a novel species of the genus Devosia, for which the name Devosia yakushimensis sp. nov. is proposed. The type strain is Yak96BT (=KCTC 22147T=NBRC 103855T=LMG 24299T).

2006 ◽  
Vol 56 (7) ◽  
pp. 1531-1534 ◽  
Author(s):  
Reiji Tanaka ◽  
Satoshi Kawaichi ◽  
Hiroshi Nishimura ◽  
Yoshihiko Sako

A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52–78 °C (optimum, 70 °C), pH 5–8 (optimum, pH 7) and 0–4.5 % NaCl (optimum, 1.0 %). The novel isolate was a strictly aerobic heterotroph that utilized complex proteinaceous substrates as well as a variety of carboxylic acids and amino acids. The G+C content of the genomic DNA was 70.8 mol%. Analysis of 16S rRNA gene sequences indicated that strain KW1T is closely related to Thermaerobacter subterraneus C21T (98.4 % sequence similarity). However, the DNA–DNA hybridization value for strain KW1T and T. subterraneus ATCC BAA-137T was below 46 %. On the basis of the molecular and physiological traits of strain KW1T, it represents a novel species of the genus Thermaerobacter, for which the name Thermaerobacter litoralis sp. nov. is proposed. The type strain is KW1T (=JCM 13210T=DSM 17372T).


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1876-1880 ◽  
Author(s):  
Yam Benmalek ◽  
Jean-Luc Cayol ◽  
Nabila A. Bouanane ◽  
Hocine Hacene ◽  
Guy Fauque ◽  
...  

A Gram-staining-negative, yellow-pigmented, strictly aerobic bacterium, designated strain 1YB-R12T, was isolated from a soil sample in western Algeria. The novel isolate was heterotrophic, chemoorganotrophic, halotolerant and psychrotolerant. The temperature and pH optima for growth were 28–30 °C and pH 7.3–8. The bacterium tolerated up to 6 % (w/v) NaCl. Cells were non-motile, non-gliding and non-spore-forming, and were characterized by a variable morphological cycle. Flexirubin-type pigments were not detected. 16S rRNA gene sequence analysis showed that strain 1YB-R12T occupied a distinct lineage within the genus Chryseobacterium and shared highest sequence similarity with Chryseobacterium haifense LMG 24029T (96.5 %). The DNA G+C content of strain 1YB-R12T was 40.9 mol%. The predominant cellular fatty acids were anteiso-C15 : 0 (41.4 %) and iso-C15 : 0 (14.4 %). On the basis of phenotypic properties and phylogenetic distinctiveness, strain 1YB-R12T is considered to represent a novel species of the genus Chryseobacterium, for which the name Chryseobacterium solincola sp. nov. is proposed. The type strain is 1YB-R12T (=DSM 22468T=CCUG 55604T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1903-1906 ◽  
Author(s):  
Kengo Shimomura ◽  
Shigeo Kaji ◽  
Akira Hiraishi

A yellow-pigmented bacterium designated strain GUM-KajiT was isolated from a lactic acid beverage. The strain had Gram-negative, non-motile, rod-shaped cells. It was strictly aerobic and chemo-organotrophic and grew at 5–30 °C and at pH 5–8. The major components of the non-polar and 3-hydroxy fatty acids were C15 : 0 iso and 3-OH-C17 : 0 iso, respectively. Menaquinone MK-6 was detected as the sole quinone. 16S rRNA gene sequence comparisons revealed that strain GUM-KajiT is affiliated to the genus Chryseobacterium, with Chryseobacterium joostei as its phylogenetic neighbour, but there were low levels of similarity (<96 %) to any established species of the genus. The G+C content of the genomic DNA was 36·6 mol%. The novel bacterium differed from any known species of Chryseobacterium in terms of a number of phenotypic properties. Thus, the name Chryseobacterium shigense sp. nov. is proposed for this novel bacterium. The type strain is strain GUM-KajiT (=BAMY 1001T=NCIMB 14047T=DSM 17126T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2943-2948 ◽  
Author(s):  
Wonyong Kim ◽  
Chatuphon Siamphan ◽  
Jong-Hwa Kim ◽  
Ampaitip Sukhoom

A Gram-stain-positive, spore-forming, rod-shaped, motile, strictly aerobic bacterium, designated CAU 1183T, was isolated from marine sand and its taxonomic position was investigated by using a polyphasic approach. The bacterium grew optimally at 30 °C, at pH 8.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1183T formed a distinct lineage within the genus Oceanobacillus and exhibited the highest similarity to Oceanobacillus chungangensis CAU 1051T (97.6 %). The strain contained MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 was the major cellular fatty acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The polar lipid pattern of strain CAU 1183T consisted of diphosphatidylglycerol, phosphatidylglycerol and unidentified lipids, including two phospholipids, two glycolipids, a phosphoglycolipid and two lipids. The G+C content of the genomic DNA was 37.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain CAU 1183T should be assigned to a novel species in the genus Oceanobacillus, for which the name Oceanobacillus arenosus sp. nov. is proposed. The type strain is CAU 1183T ( = KCTC 33037T = CECT 8560T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2537-2553 ◽  
Author(s):  
Ram Hari Dahal ◽  
Dhiraj Kumar Chaudhary ◽  
Dong-Uk Kim ◽  
Jaisoo Kim

Fifteen isolates of the genus Pedobacter were obtained from Arctic soil samples. All isolates were Gram-stain-negative and rod-shaped. Cells were strictly aerobic, psychrotolerant and grew optimally at 15–20 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all the isolated strains formed a lineage within the family Sphingobacteriaceae and clustered as members of the genus Pedobacter . The sole respiratory quinone was MK-7 and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were summed feature 3 (iso-C15 : 02-OH/C16 : 1ω7c/ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH. The DNA G+C content of the novel strains was 33.9–41.8 mol%. In addition, the average nucleotide identity and in silico DNA–DNA hybridization relatedness values between the novel type strains and phylogenetically related type strains were below the threshold values used for species delineation. Based on genomic, chemotaxonomic, phenotypic, phylogenetic and phylogenomic analyses, the isolated strains represent novel species in the genus Pedobacter , for which the names Pedobacter cryotolerans sp. nov. (type strain AR-2-6T=KEMB 9005-717T=KACC 19998T=NBRC 113826T), Pedobacter cryophilus sp. nov. (type strain AR-3-17T=KEMB 9005-718T=KACC 19999T=NBRC 113827T), Pedobacter frigiditerrae sp. nov. (type strain RP-1-13T=KEMB 9005-720T=KACC 21147T=NBRC 113829T), Pedobacter psychroterrae sp. nov. (type strain RP-1-14T=KEMB 9005-721T=KACC 21148T=NBRC 113830T), Pedobacter hiemivivus sp. nov. (type strain RP-3-8T=KEMB 9005-724T=KACC 21152T=NBRC 113833T), Pedobacter frigidisoli sp. nov. (type strain RP-3-11T=KEMB 9005-725T=KACC 21153T=NBRC 113927T), Pedobacter frigoris sp. nov. (type strain RP-3-15T=KEMB 9005-726T=KACC 21154T=NBRC 113834T), Pedobacter psychrodurus sp. nov. (type strain RP-3-21T=KEMB 9005-728T=KACC 21156T=NBRC 113835T) and Pedobacter polaris sp. nov. (type strain RP-3-22T=KEMB 9005-729T=KACC 21157T=NBRC 113836T) are proposed.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4396-4401 ◽  
Author(s):  
Jung-Eun Yang ◽  
Heung-Min Son ◽  
Jung Min Lee ◽  
Heon-Sub Shin ◽  
Sang-Yong Park ◽  
...  

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain, designated THG-45T, was isolated from soil of a ginseng field of Pocheon province in the Republic of Korea and its taxonomic position was investigated by a polyphasic approach. Growth occurred at 4–30 °C, at pH 5.5–9.0 and with 0–2 % (w/v) NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity, strain THG-45T was shown to belong to the genus Pedobacter and was related to Pedobacter borealis G-1T (98.8 %), P. alluvionis NWER-II11T (97.9 %), P. agri PB92T (97.9 %), P. terrae DS-57T (97.5 %), P. suwonensis 15-52T (97.4 %), P. sandarakinus DS-27T (97.0 %) and P. soli 15-51T (97.0 %), but DNA relatedness between strain THG-45T and these strains was below 36 %. The G+C content of the genomic DNA was 39 mol%. The only isoprenoid quinone detected in strain THG-45T was menaquinone-7 (MK-7). The predominant fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH, and the major polar lipids were phosphatidylethanolamine and an unidentified aminophosphoglycolipid. Phenotypic data and phylogenetic inference supported the affiliation of strain THG-45T to the genus Pedobacter , and a number of biochemical tests differentiated strain THG-45T from the recognized species of the genus Pedobacter . Therefore, the novel isolate represents a novel species, for which the name Pedobacter ginsenosidimutans sp. nov. is proposed, with THG-45T as the type strain ( = KACC 14530T = JCM 16721T).


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1191-1198 ◽  
Author(s):  
Kathrin I. Mohr ◽  
Ronald O. Garcia ◽  
Klaus Gerth ◽  
Herbert Irschik ◽  
Rolf Müller

A novel starch-degrading myxobacterium designated NOSO-4T (new organism of the Sorangiineae strain 4) was isolated in 1995 from a soil sample containing plant residues, collected in Lucknow, Uttar Pradesh, India. The novel bacterium shows typical myxobacterial characteristics such as Gram-negative, rod-shaped vegetative cells, swarming colonies, fruiting body-like aggregates and bacteriolytic activity. The strain is mesophilic, strictly aerobic and chemoheterotrophic. Based on 16S rRNA gene sequences, NOSO-4T shows highest similarity (96.2 %) with the unidentified bacterial strain O29 (accession no. FN554397), isolated from leek (Allium porrum) rhizosphere, and to the myxobacteria Jahnella thaxteri (88.9 %) and Chondromyces pediculatus (88.5 %). Major fatty acids are C17 : 1 2-OH, C20 : 4ω6 (arachidonic acid), and the straight-chain fatty acids C17 : 0, C15 : 0 and C16 : 0. The genomic DNA G+C content of the novel isolate is 66.8 mol%. It is proposed that strain NOSO-4T represents a novel species in a new genus, i.e. Sandaracinus amylolyticus gen. nov., sp. nov., but also belongs to a new family, Sandaracinaceae fam. nov. The type strain of the type species, S. amylolyticus sp. nov., is NOSO-4T ( = DSM 53668T = NCCB 100362T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2215-2220 ◽  
Author(s):  
Atsushi Baba ◽  
Masayuki Miyazaki ◽  
Takahiko Nagahama ◽  
Yuichi Nogi

Three chitin-degrading strains representing two novel species were isolated from mangrove forests in Okinawa, Japan. The isolates, ABABA23T, ABABA211 and ABABA212T, were Gram-negative, non-spore-forming, strictly aerobic chemo-organotrophs. The novel strains produced Q-8 as the major isoprenoid quinone component. The predominant fatty acids were iso-C15 : 0 and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolates were closely affiliated with members of the genus Microbulbifer. The DNA G+C contents of strains ABABA23T and ABABA212T were 57.8 and 60.2 mol%, respectively. DNA–DNA relatedness values between these two strains and Microbulbifer reference strains were significantly lower than 70 %, the generally accepted threshold level below which strains are considered to belong to separate species. Based on differences in taxonomic characteristics, the three isolates represent two novel species of the genus Microbulbifer, for which the names Microbulbifer chitinilyticus sp. nov. (type strain, ABABA212T = JCM 16148T = NCIMB 14577T) and Microbulbifer okinawensis sp. nov. (type strain, ABABA23T = JCM 16147T = NCIMB 14576T; reference strain, ABABA211) are proposed.


Sign in / Sign up

Export Citation Format

Share Document