scholarly journals Litoreibacter albidus gen. nov., sp. nov. and Litoreibacter janthinus sp. nov., members of the class Alphaproteobacteria isolated from the seashore

2011 ◽  
Vol 61 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Lyudmila A. Romanenko ◽  
Naoto Tanaka ◽  
Galina M. Frolova ◽  
Vassilii I. Svetashev ◽  
Valery V. Mikhailov

Two Gram-negative, strictly aerobic, non-motile bacteria designated strains KMM 3851T and KMM 3842T were respectively isolated from a marine snail specimen (Umbonium costatum) and from surrounding sediments collected simultaneously from the shore of the Sea of Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains KMM 3851T and KMM 3842T were affiliated with the Roseobacter lineage of the class Alphaproteobacteria as a separate phylogenetic line adjacent to the members of the genus Thalassobacter. These novel isolates shared 98.5 % 16S rRNA gene sequence similarity and 15 % DNA–DNA relatedness. The major isoprenoid quinone of both strains was Q-10 and polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and aminophospholipids. In addition, strain KMM 3851T contained two unknown lipids, whereas strain KMM 3842T contained diphosphatidylglycerol. Fatty acid analysis revealed C18 : 1 ω7c and C16 : 0 as major components and small amounts of C18 : 2. The DNA G+C contents were 60.4 mol% (KMM 3851T) and 58.5 mol% (KMM 3842T). Based on distinctive phenotypic characteristics, DNA–DNA hybridization data and phylogenetic distance, strains KMM 3851T and KMM 3842T should be classified as representatives of two novel species in a new genus, Litoreibacter gen. nov., with the type species Litoreibacter albidus sp. nov. (type strain KMM 3851T =NRIC 0773T =JCM 16493T) and a second species Litoreibacter janthinus sp. nov. (type strain KMM 3842T =NRIC 0772T =JCM 16492T).

2010 ◽  
Vol 60 (12) ◽  
pp. 2951-2959 ◽  
Author(s):  
Timofey A. Pankratov ◽  
Svetlana N. Dedysh

Five strains of strictly aerobic, heterotrophic bacteria that form pink–red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic Sphagnum peat bogs and were designated OB1010T, LCBR1, TPB6011T, TPB6028T and TPO1014T. Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0–7.5 (optimum pH 3.8–4.5) and at 2–33 °C (optimum 15–22 °C). The major fatty acids were iso-C15 : 0, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3–59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum Acidobacteria and displayed 95.3–98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010T, LCBR1, TPB6011T, TPB6028T, and TPO1014T were members of the genera Terriglobus (94.6–95.8 % 16S rRNA gene sequence similarity) and Edaphobacter (94.2–95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, Granulicella gen. nov., containing four novel species, Granulicella paludicola sp. nov. with type strain OB1010T (=DSM 22464T =LMG 25275T) and strain LCBR1, Granulicella pectinivorans sp. nov. with type strain TPB6011T (=VKM B-2509T =DSM 21001T), Granulicella rosea sp. nov. with type strain TPO1014T (=DSM 18704T =ATCC BAA-1396T) and Granulicella aggregans sp. nov. with type strain TPB6028T (=LMG 25274T =VKM B-2571T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2565-2570 ◽  
Author(s):  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Myungjin Lee ◽  
Deok-Chun Yang ◽  
...  

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated Gsoil 104T, was isolated from a soil sample from a ginseng field in Pocheon Province (South Korea) and was characterized taxonomically by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 104T was shown to belong to the family Sphingobacteriaceae, being related to Pedobacter africanus DSM 12126T (97.0 %), Pedobacter caeni LMG 22862T (96.9 %), Pedobacter cryoconitis DSM 14825T (96.8 %) and Pedobacter heparinus DSM 2366T (96.6 %). The phylogenetic distance from any other Pedobacter species with a validly published name was greater than 3.4 % (i.e. <96.6 % 16S rRNA gene sequence similarity). DNA–DNA hybridization experiments showed that values for DNA–DNA relatedness between strain Gsoil 104T and its phylogenetically closest neighbours were below 37 %. The G+C content of the genomic DNA was 43.6 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were C16 : 1 ω7c, iso-C15 : 0, C16 : 0, iso-C17 : 0 3-OH and iso-C15 : 0 2-OH. These chemotaxonomic data support the affiliation of strain Gsoil 104T to the genus Pedobacter. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 104T represents a novel species in the genus Pedobacter, for which the name Pedobacter ginsengisoli sp. nov. is proposed. The type strain is Gsoil 104T (=KCTC 12576T=LMG 23399T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3690-3694 ◽  
Author(s):  
Fan Jiang ◽  
Xiuqing Xue ◽  
Xia Qiu ◽  
Kundi Zhang ◽  
Xulu Chang ◽  
...  

A pale pink and strictly aerobic bacterium, designated strain M71T, was isolated from the soil of a Euphrates poplar forest in Xingjiang, PR China. Cells of the strain were Gram-reaction-negative, rod-shaped and motile by means of a single polar flagellum. Growth occurred at 10–37 °C (optimum 30 °C), at pH 6.0–9.0 (optimum pH 7.0–8.0) and with 0–2.0 % NaCl (w/v, optimum 0 %). Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain M71T belongs to the genus Desertibacter in the family Rhodospirillaceae . The 16S rRNA gene sequence of this strain showed 96.2 % sequence similarity with the type strain of Desertibacter roseus 2262T. The respiratory quinone was Q-10 and the predominant cellular fatty acids were C18 : 1ω7c (53.2 %), C16 : 1ω5c (11.0 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 10.2 %) and C16 : 0 (8.5 %). The DNA G+C content was 71.2 mol% (HPLC). The strain contained phosphatidylcholine and phosphatidylethanolamine as the predominant polar lipids. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain M71T is considered to represent a novel species of the genus Desertibacter , for which the name Desertibacter xinjiangensis sp. nov. is proposed. The type strain is M71T ( = CCTCC AB 209291T = CIP 110127T).


2007 ◽  
Vol 57 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Hana Yi ◽  
Peter Schumann ◽  
Jongsik Chun

An actinobacterial strain containing demethylmenaquinone DMK-9(H4) as the diagnostic isoprenoid quinone was isolated from a tidal flat sediment sample, from South Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain JC2054T represents a distinct phyletic line within the suborder Micrococcineae of the order Actinomycetales. The closest phylogenetic neighbour was Cellulomonas fermentans, with 94.7 % 16S rRNA gene sequence similarity. The novel isolate was strictly aerobic and slightly halophilic, with optimum growth occurring in 2–4 % (w/v) NaCl. Cells were non-motile, non-sporulating and rod-shaped. The peptidoglycan type was of the A-type of cross-linkage. l-ornithine was the diamino acid and d-glutamate represented the N-terminus of the interpeptide bridge. The predominant fatty acids were anteiso-branched and straight-chain fatty acids. The major polar lipids were phosphatidylinositol, diphosphatidylglycerol and an unknown phospholipid. The menaquinone composition of C. fermentans was determined to be MK-10(H4), MK-9(H4) and MK-8(H4) in the ratio 56 : 2 : 1. On the basis of the polyphasic evidence presented in this study, it is proposed that strain JC2054T should be classified as representing a novel genus and species of the suborder Micrococcineae, with the name Demequina aestuarii gen. nov., sp. nov. The type strain is JC2054T (=IMSNU 14027T=KCTC 9919T=JCM 12123T). In addition, it was clear from the phylogenetic analysis and chemotaxonomic data that C. fermentans does not belong to the genus Cellulomonas or any other recognized genera. Therefore, C. fermentans should be reclassified as representing a novel genus, for which the name Actinotalea fermentans gen. nov., comb. nov. is proposed, with strain DSM 3133T (=ATCC 43279T=CFBP 4259T=CIP 103003T=NBRC 15517T=JCM 9966T=LMG 16154T) as the type strain.


2006 ◽  
Vol 56 (5) ◽  
pp. 1059-1065 ◽  
Author(s):  
Stanley C. K. Lau ◽  
Mandy M. Y. Tsoi ◽  
Xiancui Li ◽  
Ioulia Plakhotnikova ◽  
Sergey Dobretsov ◽  
...  

Bacterial strains UST030701-097T and UST030701-084T were isolated from a marine sponge in the Bahamas. Both strains were pink-pigmented, Gram-negative, strictly aerobic and chemo-organotrophic. Cells of strain UST030701-097T were short, curved rods with fast-gliding motility, whereas those of strain UST030701-084T were straight rods with a less rapid gliding motion. The two strains had MK-7 as the major respiratory quinone and did not produce flexirubin-type pigments. The DNA G+C contents of strains UST030701-097T and UST030701-084T were 42.5 and 43.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the family ‘Flexibacteraceae’ of the phylum Bacteroidetes. 16S rRNA gene sequence similarity between strains UST030701-097T and UST030701-084T was 95.0 %; their closest relative was [Marinicola] seohaensis, with 93.3 % and 96.0 % sequence similarity, respectively. Phylogenetic tree topology indicated that the two strains belonged to the same lineage, but were on separate branches. Whilst strain UST030701-084T and [Marinicola] seohaensis were found on one branch, strain UST030701-097T was in another branch that had no species with validly published names. Based on the polyphasic taxonomic data obtained in the present study, we propose that strain UST030701-097T represents a novel genus and that strain UST030701-084T represents a novel species in the phylum Bacteroidetes. The genus Fabibacter gen. nov. is proposed, with strain UST030701-097T (=NRRL B-41220T=JCM 13334T) as the type strain of the type species, Fabibacter halotolerans sp. nov. Strain UST030701-084T (=NRRL B-41219T=JCM 13337T) is proposed as the type strain of Roseivirga spongicola sp. nov. In an earlier study, it was suggested that the genus Marinicola is a later heterotypic synonym of the genus Roseivirga. However, a formal proposal to reclassify [Marinicola] seohaensis, the only member of the genus Marinicola, has not yet been made. The results of phylogenetic analyses in this study support the reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov.


2007 ◽  
Vol 57 (5) ◽  
pp. 932-935 ◽  
Author(s):  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana ◽  
J. F. Imhoff

A pink-pigmented, phototrophic, purple nonsulfur bacterium, strain JA173T, was isolated in pure culture from a saltern in Gokarna, India, in a medium containing 2 % (w/v) NaCl. Strain JA173T was a non-motile Gram-negative rod that multiplied by budding. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JA173T clusters with the class Alphaproteobacteria; highest sequence similarity (98 %) was to the type strain of Rhodobium orientis and 94 % similarity was observed to the 16S rRNA gene sequence of the type strain of Rhodobium marinum. However, DNA–DNA hybridization with R. orientis DSM 11290T revealed a relatedness value of only 35.1 % with strain JA173T. Strain JA173T contained lamellar internal membranes, bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Strain JA173T had an obligate requirement for NaCl (optimum growth at 2–6 %, w/v) and grew photoheterotrophically with a number of organic compounds as carbon source or electron donor. Photoautotrophic, chemoautotrophic and fermentative growth could not be demonstrated. Yeast extract was required for growth. Based on 16S rRNA gene sequence analysis, DNA–DNA hybridization data and morphological and physiological characteristics, strain JA173T is sufficiently different from other species of the genus Rhodobium to be recognized as a representative of a novel species, Rhodobium gokarnense sp. nov. The type strain is JA173T (=ATCC BAA-1215T=DSM 17935T=JCM 13532T).


2010 ◽  
Vol 60 (3) ◽  
pp. 603-609 ◽  
Author(s):  
Lyudmila A. Romanenko ◽  
Naoto Tanaka ◽  
Galina M. Frolova

Two bacterial strains, KMM 3891T and KMM 3892, were isolated from internal tissues of the marine mollusc Umbonium costatum collected from the Sea of Japan. The novel isolates were Gram-negative, aerobic, faint pink–reddish-pigmented, rod-shaped, non-motile, stenohaline and psychrotolerant bacteria that were unable to degrade most tested complex polysaccharides. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Fatty acid analysis revealed C17 : 1 ω6c, C17 : 0, C16 : 0 and C16 : 1 ω7c as the dominant components. The major isoprenoid quinone was Q-7. The DNA G+C content of strain KMM 3891T was 51.7 mol%. According to phylogenetic analysis of 16S rRNA gene sequences, strains KMM 3891T and KMM 3892 were positioned within the Gammaproteobacteria as a separate branch, sharing <93 % sequence similarity to their phylogenetic relatives including Saccharophagus degradans, Microbulbifer species, Endozoicomonas elysicola, Simiduia agarivorans and Teredinibacter turnerae. Based on phenotypic characterization and phylogenetic distance, the novel marine isolates KMM 3891T and KMM 3892 represent a new genus and species, for which the name Umboniibacter marinipuniceus gen. nov., sp. nov. is proposed. The type strain of Umboniibacter marinipuniceus is KMM 3891T (=NRIC 0753T =JCM 15738T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


Sign in / Sign up

Export Citation Format

Share Document