scholarly journals Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils

2003 ◽  
Vol 53 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Y. P. Duan ◽  
H. F. Castro ◽  
T. E. Hewlett ◽  
J. H. White ◽  
A. V. Ogram
2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Irene Cano ◽  
Ronny van Aerle ◽  
Stuart Ross ◽  
David W. Verner-Jeffreys ◽  
Richard K. Paley ◽  
...  

ABSTRACTOne of the fastest growing fisheries in the UK is the king scallop (Pecten maximusL.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resemblingRickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from “CandidatusEndonucleobacter bathymodioli” and 95% withEndozoicomonasspecies.In situhybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences fromEndozoicomonasspp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCEMolluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of anEndozoicomonas-like organism (ELO) associated with an important commercial scallop species.


2006 ◽  
Vol 50 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Shinji Sakata ◽  
Chun Sun Ryu ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Hidenori Hayashi ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 15
Author(s):  
Dwiana Muflihah Yulianti ◽  
Endah Retnaningrum ◽  
Wahyu Wilopo

Chromium is one of the metals used in many areas of industry., However, chromium is toxic to organisms when present in large quantities in the environment. One of the method for treatment of hazardous waste containing chromium in the aquatic environment can be removed by bioremediation using sulfate-reducing bacteria (SRB). Therefore, the purpose of this research were to analyze the chromium precipitation activity of sulfate-reducing bacteria isolated from sulfate reducing bioreactor and its molecular identification using 16S rRNA gene sequences. The result observed that the isolate of sulfate-reducing bacteria (KGP1 strain) has chromium tolerancy ability up to 5 ppm. It also showed that the strain KGP1 could precipitate chromium up to 0.141 ppm (79 %) on 5 days incubation. Based on 16S rRNA gene sequences, this strain identified as Desulfovibrio aerotolerans.


2004 ◽  
Vol 54 (5) ◽  
pp. 1439-1452 ◽  
Author(s):  
Yaacov Davidov ◽  
Edouard Jurkevitch

A phylogenetic analysis of Bdellovibrio-and-like organisms (BALOs) was performed. It was based on the characterization of 71 strains and on all consequent 16S rRNA gene sequences available in databases, including clones identified by data-mining, totalling 120 strains from very varied biotopes. Amplified rDNA restriction analysis (ARDRA) accurately reflected the diversity and phylogenetic affiliation of BALOs, thereby providing an efficient screening tool. Extensive phylogenetic analysis of the 16S rRNA gene sequences revealed great diversity within the Bdellovibrio (>14 % divergence) and Bacteriovorax (>16 %) clades, which comprised nine and eight clusters, respectively, exhibiting more than 3 % intra-cluster divergence. The clades diverged by more than 20 %. The analysis of conserved 16S rRNA secondary structures showed that Bdellovibrio contained motifs atypical of the δ-Proteobacteria, suggesting that it is ancestral to Bacteriovorax. While none of the Bdellovibrio strains were of marine origin, Bacteriovorax included separate soil/freshwater and marine-specific groups. On the basis of their extensive diversity and the large distance separating the groups, it is proposed that Bacteriovorax starrii be placed into a new genus, Peredibacter gen. nov., with Peredibacter starrii A3.12T (=ATCC 15145T=NCCB 72004T) as its type strain. Also proposed is a redefinition of the Bdellovibrio and the Bacteriovorax–Peredibacter lineages as two different families, i.e. ‘Bdellovibrionaceae’ and a new family, Bacteriovoracaceae. Also, a re-evaluation of oligonucleotides targeting BALOs is presented, and the implications of the large diversity of these organisms and of their distribution in very different environments are discussed.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


Sign in / Sign up

Export Citation Format

Share Document