Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment

2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2155-2159 ◽  
Author(s):  
Xiang Zeng ◽  
Xiaobo Zhang ◽  
Lijing Jiang ◽  
Karine Alain ◽  
Mohamed Jebbar ◽  
...  

A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341T) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37′ S 102° 45′ W) at a depth of 2737 m. The cells were irregular cocci, 0.8–1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1 % and 7 % (w/v) sea salts (Sigma, optimum 3 %), 1 % and 4 % (w/v) NaCl (optimum 3 %) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6±1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJT (95.7 % 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341T ( = JCM 17873T = DSM 24777T).

2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3287-3292 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin

Pink-pigmented, facultatively methylotrophic bacteria, strains 87eT and 99bT, were isolated from the bryophytes Haplocladium microphyllum and Brachythecium plumosum, respectively. The cells of both strains were Gram-reaction-negative, motile, non-spore-forming rods. On the basis of 16S rRNA gene sequence similarity, strains 87eT and 99bT were found to be related to Methylobacterium organophilum ATCC 27886T (97.1 % and 97.7 %, respectively). Strains 87eT and 99bT showed highest 16S rRNA gene similarity to Methylobacterium gnaphalii 23eT (98.3 and 99.0 %, respectively). The phylogenetic similarities to all other species of the genus Methylobacterium with validly published names were less than 97 %. Major cellular fatty acids of both strains were C18 : 1ω7c and C18 : 0. The results of DNA–DNA hybridization, phylogenetic analyses based on 16S rRNA and cpn60 gene sequences, fatty acid profiles, whole-cell matrix-assisted, laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains 87eT and 99bT from their phylogenetically closest relatives. We propose that strains 87eT and 99bT represent novel species within the genus Methylobacterium , for which the names Methylobacterium haplocladii sp. nov. (type strain 87eT = DSM 24195T = NBRC 107714T) and Methylobacterium brachythecii sp. nov. (type strain 99bT = DSM 24105T = NBRC 107710T) are proposed.


Author(s):  
Gui Zhang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
Shan Lu ◽  
...  

Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2–64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1  ω9c and C18 : 0 ante/C18 : 2  ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35–37 °C, 0.5 % (w/v) NaCl and pH 7.0–8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).


Author(s):  
Shaun M. Baesman ◽  
John M. Sutton ◽  
Janna L. Fierst ◽  
Denise M. Akob ◽  
Ronald S. Oremland

A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93T was capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l−1 NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93T represented a member of the genus Syntrophotalea with highest 16S rRNA gene sequence similarities to Syntrophotalea acetylenica DSM 3246T (96.6 %), Syntrophotalea carbinolica DSM 2380T (96.5 %), and Syntrophotalea venetiana DSM 2394T (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93T had low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genus Syntrophotalea . The phylogenetic position of SFB93T within the family Syntrophotaleaceae and as a novel member of the genus Syntrophotalea was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T (=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.


2020 ◽  
Vol 70 (12) ◽  
pp. 6060-6066 ◽  
Author(s):  
Xiaolei Wang ◽  
Feng Guo ◽  
Peng Tian ◽  
Shuangen Yu ◽  
Chun-Xu Xue ◽  
...  

A Gram-stain-negative, aerobic, gliding, reddish-orange-coloured, rod-shaped strain, designated SR4T, was isolated from surface seawater sampled at Luhuitou fringing reef (South China Sea). Phylogenetic analyses based on the 16S rRNA gene, phylogenomic analysis of single-copy gene families and whole genome data affiliated it to the genus Flammeovirga . It was most closely related to Flammeovirga yaeyamensis NBRC 100898T (97.99 % 16S rRNA gene similarity). The genome average nucleotide identity and DNA–DNA relatedness values between strain SR4T and its reference strains were less than 74.2 and 16.3 %, respectively. Growth occurred at 20–35 °C (optimum, 28 °C), pH 6.0–9.0 (optimum, pH 7.0) and in the presence of 1–6 % (w/v) NaCl (optimum, 2–4 %). The dominant fatty acids were C16 : 0, iso-C15 : 0 and C20 : 4  ω6,9,12,15c. The polar lipid profile of strain SR4T comprised phosphatidylethanolamine, two glycolipids, two aminophospholipids and three unidentified lipids. The major respiratory quinone was MK-7. The DNA G+C content of strain SR4T was 34.20 mol%. On the basis of the polyphasic evidence, strain SR4T is proposed as representing a novel species of the genus Flammeovirga , for which the name Flammeovirga agarivorans sp. nov. is proposed. The type strain is SR4T (=KCTC 82075T=MCCC 1A17137T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1394-1400 ◽  
Author(s):  
Christopher D. Ogg ◽  
Bharat K. C. Patel

A strictly anaerobic, thermophilic bacterium, designated strain AeBT, was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeBT were slightly curved rods (2.5–6.0×1.0 μm) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone–yeast extract–Casamino acids medium at 50 °C (range 37–55 °C) and pH 7 (range pH 5–9). Strain AeBT grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeBT increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4±1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeBT is a member of the family Clostridiaceae, class Clostridia, phylum ‘Firmicutes’, and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8–90.9 %). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain AeBT is considered to represent a novel species in a new genus, for which the name Fervidicella metallireducens gen. nov., sp. nov. is proposed; the type strain is AeBT (=JCM 15555T=KCTC 5667T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4196-4201 ◽  
Author(s):  
Jong-Hwan Lee ◽  
Sanjay Kumar ◽  
Geun-Hye Lee ◽  
Dong-Ho Chang ◽  
Moon-Soo Rhee ◽  
...  

Three strictly anaerobic, methanogenic strains JH1T, JH4 and JH8 were isolated from rumen of the Korean native cattle (HanWoo; Bos taurus coreanae) in South Korea. The colonies were circular, opaque, and slightly yellowish. Phylogenetic analyses of 16S rRNA gene and mcrA (encoding α subunit of methyl-coenzyme M reductase) sequences confirmed the affiliation of the novel strains with the Methanobacteriales , and Methanobrevibacter wolinii SHT was the most closely related species. The 16S rRNA gene and mcrA sequence similarities between strains JH1T, JH4 and JH8 and M. wolinii SHT were 96.2 and 89.0 % respectively, and DNA–DNA hybridization of the isolates and M. wolinii DSM 11976T showed a 20 % reassociation. Strain JH1T exhibited 92 % DNA–DNA relatedness with strains JH4 and JH8, and their 16S rRNA gene and mcrA sequences were identical. Cells stained Gram-positive and were non-motile rods, 1.5–1.8 µm long and 0.6 µm wide. The strains were able to use H2/CO2 and formate. The optimum temperature and pH ranges for growth were 37–40 °C and pH 6.5–7.0. The DNA G+C content of strain JH1T was 28 mol%. Based on data from this study using a polyphasic approach, the three strains represent a novel species of genus Methanobrevibacter , for which the name Methanobrevibacter boviskoreani sp. nov. is proposed. The type strain is JH1T ( = KCTC 4102T = JCM 18376T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1207-1212 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Jian-Wei Guo ◽  
Li Li ◽  
...  

A novel endophytic actinobacterium, designated EGI 6500707T, was isolated from the surface-sterilized root of a halophyte Anabasis elatior (C. A. Mey.) Schischk collected from Urumqi, Xinjiang province, north-west China, and characterized using a polyphasic approach. Cells were Gram-stain-positive, non-motile, short rods and produced white colonies. Growth occurred at 10–45 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 8) and in presence of 0–4 % (w/v) NaCl (optimum 0–3 %). The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol and phosphatidylglycerol. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content of strain EGI 6500707T was 69.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EGI 6500707T should be placed in the genus Frigoribacterium (family Microbacteriaceae , phylum Actinobacteria ), and that the novel strain exhibited the highest 16S rRNA gene sequence similarity to Frigoribacterium faeni JCM 11265T (99.1 %) and Frigoribacterium mesophilum MSL-08T (96.5 %). DNA–DNA relatedness between strain EGI 6500707T and F. faeni JCM 11265T was 47.2 %. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain EGI 6500707T represents a novel species of the genus Frigoribacterium , for which the name Frigoribacterium endophyticum sp. nov. is proposed. The type strain is EGI 6500707T ( = JCM 30093T = KCTC 29493T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2657-2663 ◽  
Author(s):  
Shasha Wang ◽  
Lijing Jiang ◽  
Xuewen Liu ◽  
Suping Yang ◽  
Zongze Shao

Strains 1-1NT and GYSZ_1T were isolated from marine sediments collected from the coast of Xiamen, PR China. Cells of the two strains were Gram-stain-negative, rod-shaped or slightly curved. Strain 1-1NT was non-motile, whereas strain GYSZ_1T was motile by means of one polar flagellum. The temperature, pH and salinity concentration ranges for growth of 1-1NT were 10–45 °C (optimum 30 °C), pH 5.5–8.0 (optimum 7.0) and 0–90 g l−1 NaCl (optimum 50 g l−1), while the growth of GYSZ_1T occurred at 4–45 °C (optimum 33 °C), pH 5.0–8.5 (optimum 6.5) and 5–90 g l−1 NaCl (optimum 20 g l−1). The two novel isolates were obligate chemolithoautotrophs capable of growth using hydrogen, thiosulfate, sulfide or elemental sulfur as the sole energy source, and nitrate, elemental sulfur or molecular oxygen as an electron acceptor. The major fatty acids of 1-1NT were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C18 : 0, while the predominant fatty acids of strain GYSZ_1T were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C14 : 0 3-OH. The DNA G+C contents of 1-1NT and GYSZ_1T were 34.5 mol% and 33.2 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 1-1NT and GYSZ_1T represented members of the genus Sulfurimonas , with the highest sequence similarities to Sulfurimonas crateris SN118T (97.4 %) and Sulfurimonas denitrificans DSM 1251T (94.7 %), respectively. However, 1-1NT and GYSZ_1T shared 95.5 % similarity of 16S rRNA gene sequences, representing different species of the genus Sulfurimonas . On the basis of the physiological properties and the results of phylogenetic analyses, including average nucleotide identity and in silico DNA–DNA hybridization values, strains 1-1NT and GYSZ_1T represent two novel species within the genus Sulfurimonas , for which the names Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov. are proposed, with the type strains 1-1NT (=MCCC 1A14514T=KCTC 15851T) and GYSZ_1T (=MCCC 1A14739T=KCTC 15853T), respectively. Our results also justify an emended description of the genus Sulfurimonas .


Author(s):  
Peng Wang ◽  
Yuxin Gao

Chakrabartia godavariana PRB40T was compared with Aestuariisphingobium litorale SYSU M10002T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of C. godavariana PRB40T had high similarity (99.8 %) to that of A. litorale SYSU M10002T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Chakrabartia . A draft genomic comparison between the two strains revealed an average nucleotide identity of 97.3 % and a digital DNA–DNA hybridization estimate of 79.5±2.9 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking differences in metabolic, physiological or chemotaxonomic features. Therefore, we propose that Aestuariisphingobium litorale is a later heterotypic synonym of Chakrabartia godavariana .


Sign in / Sign up

Export Citation Format

Share Document