scholarly journals Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough

2005 ◽  
Vol 55 (1) ◽  
pp. 345-351 ◽  
Author(s):  
Laurent Toffin ◽  
Klaus Zink ◽  
Chiaki Kato ◽  
Patricia Pignet ◽  
Adeline Bidault ◽  
...  

A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0–120 g l−1, with the optimum at 10–20 g l−1. The temperature range for growth at pH 7·0 was 4–50 °C, with the optimum at 37–40 °C. The optimum pH for growth was 7·0–8·0. The optimum pressure for growth was 0·1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2T (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA–DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).

2010 ◽  
Vol 60 (7) ◽  
pp. 1499-1503 ◽  
Author(s):  
Rieko Fujita ◽  
Kaoru Mochida ◽  
Yuko Kato ◽  
Keiichi Goto

A Gram-positive, endospore-forming, lactic acid bacterium was isolated from spoiled orange juice. The organism, strain QC81-06T, grew microaerobically or anaerobically at 30–45 °C (optimum 35 °C) and pH 3.5–5.5 (optimum pH 4.5), and produced acid from various sugars. d-Lactic acid was produced. It contained menaquinone-7 as the major isoprenoid quinone. The G+C content of the genomic DNA was 47.5 mol%. The predominant cellular fatty acids of the strain were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. Phylogenetic analyses based on the 16S rRNA gene and gyrB gene (DNA gyrase B subunit gene) revealed that strain QC81-06T clustered with Sporolactobacillus species but the strain was clearly distinct from other Sporolactobacillus species with significant bootstrap values. The levels of 16S rRNA gene and gyrB gene sequence similarities between strain QC81-06T and the other strains of the cluster were 96.0–97.0 % and 75.1–77.2 %, respectively. On the basis of these results, strain QC81-06T should be classified as a novel Sporolactobacillus species for which the name Sporolactobacillus putidus is proposed. The type strain is strain QC81-06T (=DSM 21265T=JCM 15325T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1442-1447 ◽  
Author(s):  
Hideyuki Tamaki ◽  
Yasuhiro Tanaka ◽  
Hiroaki Matsuzawa ◽  
Mizuho Muramatsu ◽  
Xian-Ying Meng ◽  
...  

A novel aerobic, chemoheterotrophic bacterium, strain YO-36T, isolated from the rhizoplane of an aquatic plant (a reed, Phragmites australis) inhabiting a freshwater lake in Japan, was morphologically, physiologically and phylogenetically characterized. Strain YO-36T was Gram-negative and ovoid to rod-shaped, and formed pinkish hard colonies on agar plates. Strain YO-36T grew at 20–40 °C with optimum growth at 30–35 °C, whilst no growth was observed at 15 °C or 45 °C. The pH range for growth was 5.5–8.5 with an optimum at pH 6.5. Strain YO-36T utilized a limited range of substrates, such as sucrose, gentiobiose, pectin, gellan gum and xanthan gum. The strain contained C16 : 0, C16 : 1, C14 : 0 and C15 : 0 as the major cellular fatty acids and menaquinone-12 as the respiratory quinone. The G+C content of the genomic DNA was 62.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YO-36T belonged to the candidate phylum OP10 comprised solely of environmental 16S rRNA gene clone sequences except for two strains, P488 and T49 isolated from geothermal soil in New Zealand; strain YO-36T showed less than 80 % sequence similarity to strains P488 and T47. Based on the phylogetic and phenotypic findings, a new genus and species, Armatimonas rosea gen. nov., sp. nov., is proposed for the isolate (type strain YO-36T  = NBRC 105658T  = DSM 23562T). In addition, a new bacterial phylum named Armatimonadetes phyl. nov. is proposed for the candidate phylum OP10 represented by A. rosea gen. nov., sp. nov. and Armatimonadaceae fam. nov., Armatimonadales ord. nov., and Armatimonadia classis nov.


2005 ◽  
Vol 55 (6) ◽  
pp. 2491-2495 ◽  
Author(s):  
Marta Montero-Barrientos ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
Enrique Monte ◽  
Manuel G. Roig

A Gram-positive, aerobic, long-rod-shaped, non-spore-forming bacterium (strain PPLBT) was isolated from soil mixed with Iberian pig hair. This actinomycete showed keratinase activity in vitro when chicken feathers were added to the culture medium. Strain PPLBT was oxidase-negative and catalase-positive and produced lipase and esterase lipase. This actinomycete grew at 40 °C on nutrient agar and in the same medium containing 5 % (w/v) NaCl. Growth was observed with many different carbohydrates as the sole carbon source. On the basis of 16S rRNA gene sequence similarity, strain PPLBT was shown to belong to the genus Terrabacter of the family Intrasporangiaceae. Strain PPLBT showed 98·8 % 16S rRNA gene sequence similarity to Terrabacter tumescens. Chemotaxonomic data, such as the main ubiquinone (MK-8), the main polar lipids (phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol) and the main fatty acids (i-C15 : 0, ai-C15 : 0, i-C16 : 0 and ai-C17 : 0) supported the affiliation of strain PPLBT to the genus Terrabacter. The G+C content of the DNA was 71 mol%. The results of DNA–DNA hybridization (36·6 % relatedness between Terrabacter tumescens and strain PPLBT) and physiological and biochemical tests suggested that strain PPLBT belongs to a novel species of the genus Terrabacter, for which the name Terrabacter terrae sp. nov. is proposed. The type strain is PPLBT (=CECT 3379T=LMG 22921T).


2011 ◽  
Vol 61 (1) ◽  
pp. 201-204 ◽  
Author(s):  
Hae-Min Jung ◽  
Jung-Sook Lee ◽  
Heon-Meen Bae ◽  
Tae-Hoo Yi ◽  
Se-Young Kim ◽  
...  

A Gram-reaction-negative, chemo-organotrophic, non-motile, non-spore-forming, rod-shaped bacterium (strain Gsoil 080T) was isolated from soil collected in a ginseng field in Pocheon Province, South Korea, and was investigated by using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 080T was related most closely to Inquilinus limosus strains AU0476T and AU1979 (98.9 % similarity to both). Strain Gsoil 080T shared ≤91.3 % 16S rRNA gene sequence similarity with the type strains of other recognized species examined. The genus Inquilinus belongs to the family Rhodospirillaceae in the order Rhodospirillales, class Alphaproteobacteria. The predominant ubiquinone was Q-10 and the major fatty acids were summed feature 7 (C18 : 1 ω9c/ω12t/ω7c) and C19 : 0 cyclo ω8c. The G+C content of the genomic DNA of strain Gsoil 080T was 69.9 mol%. The level of DNA–DNA relatedness between strain Gsoil 080T and I. limosus LMG 20952T was 12 %. The results of genotypic analyses in combination with chemotaxonomic and physiological data demonstrated that strain Gsoil 080T represents a novel species of the genus Inquilinus, for which the name Inquilinus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 080T (=KCTC 12574T =LMG 23638T).


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Takeshi Yamada ◽  
Masako Hamada ◽  
Misaki Kurobe ◽  
Jun Harada ◽  
Surya Giri ◽  
...  

Little information on poly(l-lactic acid) (PLLA) treatment-associated microbiota in thermophilic anaerobic digestion reactors is available. Here, we provide 16S rRNA gene sequence data on microbiota in a thermophilic anaerobic digestion reactor converting PLLA to methane for 336 days. Data comprising 99,566 total high-quality reads were tabulated at the taxonomic class level.


2007 ◽  
Vol 57 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Zhe-Xue Quan ◽  
Kwang Kyu Kim ◽  
Myung-Kyum Kim ◽  
Long Jin ◽  
Sung-Taik Lee

A Gram-negative, non-spore-forming, yellow-pigmented bacterium, strain N4T, was isolated from a nickel-complexed cyanide-degrading bioreactor and subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain N4T is affiliated to the genus Chryseobacterium of the family Flavobacteriaceae. The levels of 16S rRNA gene sequence similarity between strain N4T and the type strains of all known Chryseobacterium species were 93.2–95.8 %, suggesting that strain N4T represents a novel species within the genus Chryseobacterium. The strain contained iso-C15 : 0 and summed feature 4 as the major fatty acids and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 38.2 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain N4T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium caeni sp. nov. is proposed. The type strain is N4T (=KCTC 12506T=CCBAU 10201T=DSM 17710T).


Sign in / Sign up

Export Citation Format

Share Document