Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China

2005 ◽  
Vol 55 (6) ◽  
pp. 2539-2542 ◽  
Author(s):  
Xue-Wei Xu ◽  
Shuang-Jiang Liu ◽  
Dilbar Tohty ◽  
Aharon Oren ◽  
Min Wu ◽  
...  

A novel extremely halophilic strain, isolated from Aibi salt lake, Xin-Jiang, China, was subjected to polyphasic taxonomic characterization. This strain, designated AB14T, is neutrophilic, motile and requires at least 10 % (w/v) NaCl for growth. Strain AB14T grows at 24–58 °C, with optimal growth at 42–45 °C. Mg2+ is not required, but growth is observed in MgCl2 concentrations as high as 1·0 M. Strain AB14T possesses the diphytanyl (C20C20) and phytanyl-sesterterpanyl diether (C20C25) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and mannose-2,6 disulfate 1→2 glucose-glycerol diether. The genomic DNA G+C content is 66·6 mol%. The 16S rRNA gene sequence similarity values of strain AB14T with its nearest phylogenetic neighbours (Haloterrigena thermotolerans and Haloterrigena turkmenica) are 98·6 and 96·0 %, respectively. DNA–DNA hybridization revealed 54 % relatedness between strain AB14T and Haloterrigena thermotolerans JCM 11050T and 21 % between strain AB14T and Haloterrigena turkmenica JCM 9101T. It is therefore proposed that strain AB14T represents a novel species, for which the name Haloterrigena saccharevitans sp. nov. is proposed. The type strain is AB14T (=AS 1.3730T=JCM 12889T).

2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2345-2350 ◽  
Author(s):  
Yusuke Kondo ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1T, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1T were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg2+ was not required for growth. The major polar lipids of the isolate were C20C20 and C20C25 archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1T was most closely related to those of the species of the genus Halorubrum, Halorubrum luteum CECT 7303T (95.9 % similarity), Halorubrum alkaliphilum JCM 12358T (95.3 %), Halorubrum kocurii JCM 14978T (95.3 %) and Halorubrum lipolyticum JCM 13559T (95.3 %). The rpoB′ gene sequence of strain MK13-1T had < 90 % sequence similarity to those of other members of the genus Halorubrum. Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1T may represent a novel species of the genus Halorubrum, for which the name Halorubrum gandharaense sp. nov. is proposed, with the type strain MK13-1T ( = JCM 17823T = CECT 7963T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1949-1952 ◽  
Author(s):  
Xue-Wei Xu ◽  
Min Wu ◽  
Pei-Jin Zhou ◽  
Shuang-Jiang Liu

A Gram-negative, motile, neutrophilic and extremely halophilic strain, AJ5T, was isolated from a salt lake in Xinjiang, China, and subjected to polyphasic taxonomic study. The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and glycolipid. The DNA G+C content was 64·9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain AJ5T clustered with members of the genus Halobiforma, exhibiting high sequence similarity to the 16S rRNA gene sequences of Halobiforma nitratireducens (96·3 %) and Halobiforma haloterrestris (99·0 %). Comparative analysis of phenotypic characteristics and DNA–DNA hybridization between strain AJ5T and Halobiforma species supported the conclusion that AJ5T represents a novel species within this genus, for which the name Halobiforma lacisalsi sp. nov. is proposed. The type strain is AJ5T (=CGMCC 1.3738T=JCM 12983T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1311-1314 ◽  
Author(s):  
Xue-Wei Xu ◽  
Pei-Gen Ren ◽  
Shuang-Jiang Liu ◽  
Min Wu ◽  
Pei-Jin Zhou

A novel extremely halophilic strain, AJ2T, was isolated from Ayakekum salt lake located in the Altun Mountain National Nature Reserve in Xinjiang, China. This isolate was neutrophilic, motile and grew in a wide range of MgCl2 concentrations (0·005–1·0 M). The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. A comprehensive 16S rRNA gene sequence analysis revealed that the isolate shared 96·6–97·7 % sequence identity with Natrinema species. The isolate, however, could be genetically differentiated from these species by DNA–DNA hybridization analysis and on the basis of its physiological properties. On the basis of the polyphasic evidence, strain AJ2T (=AS 1.3731T=JCM 12890T) represents the type strain of a novel species, for which the name Natrinema altunense sp. nov. is proposed.


2007 ◽  
Vol 57 (2) ◽  
pp. 393-397 ◽  
Author(s):  
Madalin Enache ◽  
Takashi Itoh ◽  
Masahiro Kamekura ◽  
Gabriela Teodosiu ◽  
Lucia Dumitru

A novel halophilic archaeon, strain TL6T, was isolated from Telega Lake, a hypersaline environment in Prahova county, Romania. Strain TL6T was able to grow in media with a salt concentration of between 2.5 and 5.2 M, with optimum growth at a concentration of 3.5 M. The novel strain was able to grow at concentrations of 1 M MgCl2 or less, with an optimum of 0.4 M Mg2+. Growth of the novel strain occurred between pH 6.0 and 8.5, with an optimum of pH 7.0–7.5. The G+C content of the total DNA was 63.7 mol%. The 16S rRNA gene sequence of the novel strain was most closely related to species of the genus Haloferax (97.3–99.3 % sequence similarity). The lipid profile of the novel strain corresponded to that of other species belonging to the genus Haloferax. A comparative analysis of the phenotypic properties and DNA–DNA hybridization between the novel strain and other species of the genus Haloferax strongly supported the conclusion that strain TL6T represents a novel species within this genus, for which the name Haloferax prahovense sp. nov., is proposed. The type strain is TL6T (=JCM 13924T=DSM 18310T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1429-1433 ◽  
Author(s):  
Virginia Gallego ◽  
Maria Teresa García ◽  
Antonio Ventosa

Strain GR3T was isolated from drinking water during a screening programme to monitor the bacterial population present in the distribution system of Seville (Spain), and it was studied phenotypically, genotypically and phylogenetically. This pink-pigmented bacterium was identified as a Methylobacterium sp. Members of this genus are distributed in a wide variety of natural habitats, including soil, dust, air, freshwater and aquatic sediments. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain GR3T was closely related to Methylobacterium aquaticum (97·4 % sequence similarity), whereas sequence similarity values with respect to the rest of the species belonging to this genus were lower than 96 %. Furthermore, the DNA–DNA hybridization data and its phenotypic characteristics clearly indicate that the isolate represents a novel Methylobacterium species, for which the name Methylobacterium variabile sp. nov. is proposed. GR3T (=DSM 16961T=CCM 7281T=CECT 7045T) is the type strain; the DNA G+C content of this strain is 69·2 mol%.


2019 ◽  
Vol 7 (3) ◽  
pp. 78 ◽  
Author(s):  
Panpan Qin ◽  
Yuanqiang Zou ◽  
Ying Dai ◽  
Guangwen Luo ◽  
Xiaowei Zhang ◽  
...  

Butyrate-producing bacteria can biosynthesize butyrate and alleviate inflammatory diseases. However, few studies have reported that the genus Collinsella has the ability to produce butyric acid. Here, our study depicts a Collinsella strain, which is a rod-shaped obligate anaerobe that is able to produce butyric acid. This microorganism was isolated from a human gut, and the optimal growth conditions were found to be 37 °C on PYG medium with pH 6.5. The 16S rRNA gene sequence demonstrated that this microorganism shared 99.93% similarity with C. aerofaciens ATCC 25986T, which was higher than the threshold (98.65%) for differentiating two species. Digital DNA–DNA hybridization and average nucleotide identity values also supported that this microorganism belonged to the species C. aerofaciens. Distinct phenotypic characteristics between TF06-26 and the type strain of C. aerofaciens, such as the fermentation of D-lactose, D-fructose and D-maltose, positive growth under pH 5 and 0.2% (w/v) cholate, suggested this strain was a novel subspecies. Comparative genome analysis revealed that butyric acid kinase and phosphate butyryltransferase enzymes were coded exclusively by this strain, indicating a specific butyric acid-producing function of this C. aerofaciens subspecies within the genus Collinsella. Thus, Collinsella aerofaciens subsp. shenzhenensis subsp. nov. was proposed, with set strain TF06-26T (=CGMCC 1.5216T = DSM 105138T) as the type strain.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3232-3236 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Ali Makhdoumi-Kakhki ◽  
Maliheh Mehrshad ◽  
Seyed Abolhassan Shahzadeh Fazeli ◽  
Antonio Ventosa

Strain CC65T, a novel extremely halophilic archaeon, was isolated from a brine sample of a salt lake in Iran. The novel strain was light yellow-pigmented, non-motile, pleomorphic and required at least 1.7 M NaCl and 0.02 M MgCl2 for growth. Optimal growth was achieved at 3.5 M NaCl and 0.4 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, respectively, while it was able to grow over a pH and a temperature range of pH 6.5–9.0 and 30–50 °C, respectively. Analysis of 16S rRNA gene sequence revealed that strain CC65T clustered with the sole member of the genus Halopenitus , Halopenitus persicus DC30T with a sequence similarity of 98.0 %. The polar lipid profile of strain CC65T consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. An unidentified glycolipid and two minor phospholipids were also observed. The only quinone present was MK-8(II-H2). The DNA G+C content of strain CC65T was 63.8 mol%. On the basis of the biochemical and physiological characteristics, as well as DNA–DNA hybridization (44 % with Halopenitus persicus IBRC 10041T), strain CC65T is classified as a novel species of the genus Halopenitus , for which the name Halopenitus malekzadehii sp. nov. is proposed. The type strain is CC65T ( = IBRC-M 10418T = KCTC 4045T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1402-1407 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

Strain SH-6T was isolated from the sediment of Lake Shangmatala, a saline lake in Inner Mongolia (China). Cells were pleomorphic. The organism was neutrophilic and required at least 2.5 M (15 %) NaCl, but not MgCl2, for growth; optimal growth occurred at 4.3 M (25 %) NaCl. The G+C content of its DNA was 63.1 mol%. 16S rRNA gene sequence analysis revealed that strain SH-6T is a member of the family Halobacteriaceae, but there was a low level of similarity with other members of this family. Highest sequence similarity (94.6 %) was obtained with the 16S rRNA genes of the type strains of Natronolimnobius innermongolicus and Natronolimnobius baerhuensis. Polar lipid analyses revealed that strain SH-6T contains phosphatidylglycerol and phosphatidylglyceromethylphosphate, derived from both C20C20 and C20C25 glycerol diethers together with the glycolipid S2-DGD-1. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain SH-6T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae, order Halobacteriales, for which the name Halopiger xanaduensis gen. nov., sp. nov. is proposed. The type strain of Halopiger xanaduensis is SH-6T (=CECT 7173T=CGMCC 1.6379T=JCM 14033T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1305-1310 ◽  
Author(s):  
Jan Hendrik Wübbeler ◽  
Tina Lütke-Eversloh ◽  
Stefanie Van Trappen ◽  
Peter Vandamme ◽  
Alexander Steinbüchel

In this study, a novel betaproteobacterium, strain DPN7T, was isolated under mesophilic conditions from compost because of its capacity to utilize the organic disulfide 3,3′-dithiodipropionic acid. Analysis of the 16S rRNA gene sequence of strain DPN7T revealed 98.5 % similarity to that of Tetrathiobacter kashmirensis LMG 22695T. Values for sequence similarity to members of the genera Alcaligenes, Castellaniella and Taylorella, the nearest neighbours of the genus Tetrathiobacter, were about 95 % or less. The DNA G+C content of strain DPN7T was 55.1 mol%. The level of DNA–DNA hybridization between strain DPN7T and T. kashmirensis LMG 22695T was 41 %, whereas it was much lower between strain DPN7T and Alcaligenes faecalis LMG 1229T (7 %) or Castellaniella defragrans LMG 18538T (5 %). This genotypic divergence was supported by differences in biochemical and chemotaxonomic characteristics. For this reason, and because of the differences in the protein and fatty acid profiles, strain DPN7T should be classified within a novel species of Tetrathiobacter, for which the name Tetrathiobacter mimigardefordensis sp. nov. is proposed. The type strain is strain DPN7T (=DSM 17166T=LMG 22922T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1583-1588 ◽  
Author(s):  
Karima Kharroub ◽  
Teresa Quesada ◽  
Raquel Ferrer ◽  
Susana Fuentes ◽  
Margarita Aguilera ◽  
...  

A novel extremely halophilic archaeon was isolated from Ezzemoul sabkha, Algeria. The strain, designated 5.1T, was neutrophilic, motile and Gram-negative. At least 15 % (w/v) NaCl was required for growth. The isolate grew at pH 6.5–9.0, with optimum growth at pH 7.0–7.5. Mg2+ was required for growth. Polar lipids were C20C20 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, and phosphatidylglycerol sulfate and sulfated diglycosyl diether. The genomic DNA G+C content of strain 5.1T was 61.9 mol% (T m). Phylogenetic analysis based on comparison of 16S rRNA gene sequences revealed that strain 5.1T clustered with Halorubrum species. The results of DNA–DNA hybridization and biochemical tests allowed genotypic and phenotypic differentiation of strain 5.1T from other Halorubrum species. The name Halorubrum ezzemoulense sp. nov. (type strain 5.1T=CECT 7099T=DSM 17463T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document