scholarly journals Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov.

2007 ◽  
Vol 57 (11) ◽  
pp. 2453-2457 ◽  
Author(s):  
S. Kalyan Chakravarthy ◽  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two Gram-negative, vibrioid, phototrophic, purple non-sulfur strains, JA131T and JA135T, were isolated from marine habitats. Strain JA131T is non-motile but strain JA135T is motile by means of a pair of monopolar flagella. Both strains have an obligate requirement for NaCl for growth. The intracellular photosynthetic membranes of the two novel strains are of the vesicular type. Bacteriochlorophyll a and probably rhodovibrine are present as photosynthetic pigments. Niacin, thiamine and p-aminobenzoic acid are required as growth factors for both novel strains. Based on 16S rRNA gene sequence analysis, morphological and physiological characteristics, strains JA131T and JA135T are significantly different from each other and from other species of the genus Roseospira and thus represent two novel species for which the names Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. are proposed, respectively. The type strain of Roseospira visakhapatnamensis sp. nov. is JA131T (=ATCC BAA-1365T=JCM 14190T) and the type strain of Roseospira goensis sp. nov. is JA135T (=ATCC BAA-1364T=JCM 14191T).

2006 ◽  
Vol 56 (3) ◽  
pp. 609-612 ◽  
Author(s):  
Julia Downes ◽  
Iain C. Sutcliffe ◽  
Tor Hofstad ◽  
William G. Wade

Eight strains of anaerobic Gram-negative bacilli isolated from infections of the skin and soft tissues were subjected to a comprehensive range of phenotypic and genotypic tests. 16S rRNA gene sequence analysis revealed the strains to constitute a homogeneous group, distinct from species with validly published names but related to a cluster including Prevotella buccae, Prevotella dentalis and Prevotella baroniae. A novel species, Prevotella bergensis sp. nov., is proposed to accommodate these strains. Prevotella bergensis is saccharolytic and produces acetic and succinic acids as end products of fermentation. The G+C content of the DNA of the type strain is 48 mol%. The type strain of Prevotella bergensis is 94067913T (=DSM 17361T=CCUG 51224T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2936-2939 ◽  
Author(s):  
Julia Downes ◽  
Iain C. Sutcliffe ◽  
Veronica Booth ◽  
William G. Wade

Three strains of anaerobic Gram-negative bacilli isolated from human oral sites were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group. 16S rRNA gene sequence analysis revealed the strains to constitute a novel group within the genus Prevotella, most closely related to Prevotella oris and Prevotella salivae. A novel species, Prevotella maculosa sp. nov., is proposed to accommodate these strains. Prevotella maculosa is saccharolytic and produces acetic and succinic acids as end products of fermentation. The G+C content of the DNA of the type strain is 48 mol%. The type strain of Prevotella maculosa is W1609T (=DSM 19339T =CCUG 54766T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2010 ◽  
Vol 60 (8) ◽  
pp. 1721-1724 ◽  
Author(s):  
Jong-Sik Jin ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Masao Hattori ◽  
Yoshimi Benno

An equol-producing bacterium, strain DZET, which was isolated from human faeces, was characterized by morphological, biochemical and molecular methods. The isolate was Gram-positive, obligately anaerobic, non-spore-forming, asaccharolytic and rod-shaped. 16S rRNA gene sequence analysis showed 92.8, 91.0, 91.1 and 90.6 % similarities with Slackia faecicanis, Slackia exigua, Slackia heliotrinireducens and Slackia isoflavoniconvertens, respectively. Based on these data, we propose a novel species of the genus Slackia, Slackia equolifaciens sp. nov. The major cellular fatty acids are C14 : 0, C18 : 1 ω9c and C18 : 1 ω9c DMA (dimethyl acetal). The DNA G+C content of the strain is 60.8 mol%. The type strain of S. equolifaciens sp. nov. is DZET (=JCM 16059T =CCUG 58231T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2538-2542 ◽  
Author(s):  
A. M. Castillo ◽  
M. C. Gutiérrez ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

A novel halophilic archaeon, strain EJ-32T, was isolated from water from Lake Ejinor in Inner Mongolia, China. The taxonomy of strain EJ-32T was studied by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities, strain EJ-32T was shown to be phylogenetically related to Halorubrum coriense (97.9 %), Halorubrum trapanicum (97.9 %), Halorubrum sodomense (97.8 %), Halorubrum tebenquichense (97.8 %), Halorubrum xinjiangense (97.6 %), Halorubrum terrestre (97.4 %), Halorubrum distributum (97.1 %) and Halorubrum saccharovorum (96.4 %). Strain EJ-32T was found to be neutrophilic, non-motile and Gram-negative. It grew in medium containing saturation concentrations of NaCl and did not require magnesium for optimal growth. The G+C content of the DNA is 64.0 mol%. Values for DNA–DNA hybridization with respect to phylogenetically related Halorubrum species were ≤49 %, indicating that EJ-32T constitutes a different genospecies. The data show that strain EJ-32T represents a novel species of the genus Halorubrum, for which the name Halorubrum ejinorense sp. nov. is proposed. The type strain is EJ-32T (=CECT 7194T=CGMCC 1.6782T=JCM 14265T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2113-2117 ◽  
Author(s):  
Akiko Kageyama ◽  
Yoko Takahashi ◽  
Satoshi Ōmura

Three novel bacterial strains were isolated from a soil sample collected in Japan by culture on a GPM agar plate supplemented with superoxide dismutase and catalase. The strains were Gram-positive, catalase-positive, non-motile bacteria with l-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12, 13 and 14. Mycolic acids were not detected. G+C contents of the DNA were in the range 69–71 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus Microbacterium and were closely related to Microbacterium terregens, Microbacterium aurum, Microbacterium koreense, Microbacterium schleiferi and Microbacterium lacticum. However, M. aurum, M. koreense and M. lacticum clearly differed from the isolated strains based on the presence of l-lysine as the cell-wall diamino acid and various other chemotaxonomic characteristics. Levels of DNA–DNA relatedness showed that the isolated strains represented three separate genomic species. Based on both phenotypic and genotypic data, the following novel species of the genus Microbacterium are proposed: Microbacterium deminutum sp. nov. (type strain KV-483T=NRRL B-24453T=NBRC 101278T), Microbacterium pumilum sp. nov. (type strain KV-488T=NRRL B-24452T=NBRC 101279T) and Microbacterium aoyamense sp. nov. (type strain KV-492T=NRRL B-24451T=NBRC 101280T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2467-2472 ◽  
Author(s):  
Niels O. G. Jørgensen ◽  
Kristian K. Brandt ◽  
Ole Nybroe ◽  
Michael Hansen

A novel, non-pigmented, rod-shaped, Gram-negative strain was isolated from mesotrophic lake water in Zealand, Denmark. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium, designated strain 389T, indicated that the strain belonged to the genus Vogesella and formed a monophyletic group with Vogesella perlucida DS-28T (99.1 % nucleotide similarity); it was less related to Vogesella indigofera ATCC 19706T (96.9 % similarity) and Vogesella lacus LMG 24504T (96.8 % similarity). Hybridization of DNA from strain 389T and V. perlucida demonstrated a reassociation of 50.6±9.6 %. The DNA G+C content of strain 389T was 61.2 mol%. The fatty acid profile of the strain differed from those of the other strains representing the genus Vogesella by a high content of C16 : 1 ω7c and/or iso-C15 : 0 2-OH (71.6 %) and a lower content of C16 : 0. Strain 389T was capable of degrading peptidoglycan and had chitinase and lysozyme activities, possibly associated with the degradation of peptidoglycan, and had capacity for degradation of several other polymer compounds. Based on phenotypic and genotypic characteristics, strain 389T represents a novel species, for which we propose the name Vogesella mureinivorans sp. nov. The type strain is 389T (=DSM 21247T =LMG 25302T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2011 ◽  
Vol 61 (5) ◽  
pp. 1149-1152 ◽  
Author(s):  
Shuhei Nagaoka ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-negative, pleomorphic, aerobic, haloalkaliphilic archaeon, strain 167-74T, was isolated from commercial rock salt imported into Japan from China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 167-74T is closely related to Halostagnicola larsenii XH-48T (98.3 %) and Halostagnicola kamekurae 194-10T (97.2 %). The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. A glycolipid was not detected, in contrast to the two existing, neutrophilic species of the genus Halostagnicola. The DNA G+C content of strain 167-74T was 60.7 mol%. and it gave DNA–DNA reassociation values of 19.5 and 18.8 %, respectively, with Hst. larsenii JCM 13463T and Hst. kamekurae 194-10T. Therefore, strain 167-74T represents a novel species, for which the name Halostagnicola alkaliphila sp. nov. is proposed, with the type strain 167-74T ( = JCM 16592T  = CECT 7631T).


2004 ◽  
Vol 54 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Joachim Wink ◽  
Julia Gandhi ◽  
Reiner M. Kroppenstedt ◽  
Gerhard Seibert ◽  
Bettina Sträubler ◽  
...  

Strain DSM 44594T, which produces the glycopeptide antibiotic decaplanin, is a member of the genus Amycolatopsis based on 16S rRNA gene sequence analysis and chemotaxonomic properties. It is the first member of this genus that is reported to form pseudosporangia, which resemble those of members of the genus Kibdelosporangium. Phylogenetically, the novel taxon is related to Amycolatopsis orientalis, Amycolatopsis lurida, Amycolatopsis azurea, Amycolatopsis japonica and Amycolatopsis keratiniphila. Morphological, cultural and physiological properties, the production of a unique glycolipid and DNA–DNA similarity of <55 % with phylogenetically related strains reveal that strain DSM 44594T represents a novel species of the genus, for which the name Amycolatopsis decaplanina sp. nov. (type strain, FH 1845T=DSM 44594T=NRRL B-24209T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document