scholarly journals Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand

2007 ◽  
Vol 57 (9) ◽  
pp. 2151-2154 ◽  
Author(s):  
Sirapan Sukontasing ◽  
Somboon Tanasupawat ◽  
Somporn Moonmangmee ◽  
Jung-Sook Lee ◽  
Ken-ichiro Suzuki

A Gram-positive and catalase-negative coccus that formed chains, strain FP15-1T, isolated from fermented tea leaves (‘miang’), was studied systematically. The strain was facultatively anaerobic and produced l-lactic acid from glucose. Demethylmenaquinone (DMK-7) was the major menaquinone. Straight-chain unsaturated fatty acids C16 : 1 and C18 : 1 were the dominant components. The DNA G+C content was 37.8 mol%. On the basis of 16S rRNA and RNA polymerase α subunit (rpoA) gene sequence analysis, strain FP15-1T was closely related to Enterococcus italicus KCTC 5373T, with 99.2 and 93.8 % similarity, respectively. The strain could be clearly distinguished from E. italicus ATCC 5373T by low DNA–DNA relatedness (≤33.8 %) and phenotypic characteristics. Therefore, this strain represent a novel species of the genus Enterococcus, for which the name Enterococcus camelliae sp. nov. is proposed. The type strain is FP15-1T (=KCTC 13133T =NBRC 101868T =NRIC 0105T =TISTR 932T =PCU 277T).

2005 ◽  
Vol 55 (2) ◽  
pp. 805-808 ◽  
Author(s):  
Ludmila Tvrzová ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
Ivo Sedláček ◽  
Susanne Verbarg ◽  
...  

Strain CCM 2783, previously classified as representing Arthrobacter aurescens, was subjected to a polyphasic taxonomic study. 16S rRNA gene sequence analysis and chemotaxonomic characteristics such as peptidoglycan type A3α Lys–Ala2, major menaquinone MK-9(H2) and fatty acid composition confirmed assignment of the strain to the genus Arthrobacter. The results of phylogenetic analysis, DNA–DNA relatedness experiments and physiological and chemotaxonomic characteristics indicate that CCM 2783 differs from its nearest phylogenetic relative Arthrobacter psychrolactophilus and from other recognized Arthrobacter species. Therefore, a novel species, Arthrobacter stackebrandtii sp. nov., is proposed with the type strain CCM 2783T (=DSM 16005T).


2005 ◽  
Vol 55 (1) ◽  
pp. 463-466 ◽  
Author(s):  
Wen-Jun Li ◽  
Hua-Hong Chen ◽  
Chang-Jin Kim ◽  
Yu-Qin Zhang ◽  
Dong-Jin Park ◽  
...  

Two novel actinobacteria isolates, designated YIM 70009T and YIM 70081T, were characterized in order to determine their taxonomic position. Cells of strains YIM 70009T and YIM 70081T were cocci, although only the latter were motile. The G+C contents of their DNAs were 64·0 and 64·5 mol%, respectively. On the basis of chemotaxonomic characteristics and 16S rRNA gene sequence analysis, the two isolates were classified in the genus Nesterenkonia. DNA–DNA hybridization and comparison of phenotypic characteristics revealed that strains YIM 70009T and YIM 70081T differed from each other and from known species. Therefore, it is proposed that they represent two separate novel species of the genus Nesterenkonia: Nesterenkonia sandarakina sp. nov. (type strain, YIM 70009T=CCTCC AA 203007T=DSM 15664T=KCTC 19011T) and Nesterenkonia lutea sp. nov. (type strain, YIM 70081T=CCTCC AA 203010T=DSM 15666T=KCTC 19013T).


2007 ◽  
Vol 57 (5) ◽  
pp. 923-931 ◽  
Author(s):  
Beatriz Cámara ◽  
Carsten Strömpl ◽  
Susanne Verbarg ◽  
Cathrin Spröer ◽  
Dietmar H. Pieper ◽  
...  

Three bacterial strains, designated MT1T, RW10T and IpA-2T, had been isolated previously for their ability to degrade chlorosalicylates or isopimaric acid. 16S rRNA gene sequence analysis demonstrated that these bacteria are related to species of the genus Pseudomonas. Analysis of the results of DNA–DNA hybridization with several close phylogenetic neighbours revealed a low level of hybridization (less than 57 %). On the basis of phenotypic characteristics, phylogenetic analysis, DNA–DNA relatedness data and chemotaxonomic analysis, it is concluded that these isolates represent separate novel species, for which the names Pseudomonas reinekei sp. nov. (type strain MT1T =DSM 18361T=CCUG 53116T), Pseudomonas moorei sp. nov. (type strain RW10T =DSM 12647T=CCUG 53114T) and Pseudomonas mohnii sp. nov. (type strain IpA-2T =DSM 18327T=CCUG 53115T) are proposed.


2007 ◽  
Vol 57 (6) ◽  
pp. 1323-1326 ◽  
Author(s):  
Hidenori Hayashi ◽  
Kensaku Shibata ◽  
Mohammad Abdul Bakir ◽  
Mitsuo Sakamoto ◽  
Shinichi Tomita ◽  
...  

Three Gram-negative, anaerobic, rod-shaped bacteria (strains CB40, CB41 and CB42T) were isolated from human faeces. Based on phylogenetic analysis and specific phenotypic characteristics, these strains were included in the genus Bacteroides, and 16S rRNA gene sequence analysis indicated that these strains represented a novel species. The strains were most closely related to the type strains of Bacteroides barnesiae and Bacteroides salanitronis, with sequence similarities of 93.4 and 89.8 %, respectively. The G+C content of strain CB42T is 44.7 mol%. Major fatty acids were anteiso-C15 : 0, C16 : 0, iso-C17 : 0 3-OH and C18 : 1 ω9c. On the basis of the data presented, a novel Bacteroides species, Bacteroides coprophilus sp. nov., is proposed, with CB42T (=JCM 13818T=DSM 18228T) as the type strain.


2005 ◽  
Vol 55 (2) ◽  
pp. 871-875 ◽  
Author(s):  
Valme Jurado ◽  
Ingrid Groth ◽  
Juan M. Gonzalez ◽  
Leonila Laiz ◽  
Barbara Schuetze ◽  
...  

A polyphasic study was carried out to clarify the taxonomic positions of three Gram-positive isolates from the Catacombs of Domitilla, Rome (Italy). 16S rRNA gene sequence comparisons placed these strains within the genus Agromyces. The morphological and chemotaxonomic characteristics of these isolates were consistent with the description of the genus Agromyces. The three isolates could be readily distinguished from one another and from representatives of all Agromyces species with validly published names by a broad range of phenotypic characteristics and DNA–DNA relatedness studies. Therefore, these isolates are proposed to represent three novel species of the genus Agromyces, Agromyces italicus sp. nov. (type strain CD1T=HKI 0325T=DSM 16388T=NCIMB 14011T), Agromyces humatus sp. nov. (type strain CD5T=HKI 0327T=DSM 16389T=NCIMB 14012T) and Agromyces lapidis sp. nov. (type strain CD55T=HKI 0324T=DSM 16390T=NCIMB 14013T).


2011 ◽  
Vol 61 (4) ◽  
pp. 911-915 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Xia Gao ◽  
Xue-Wei Xu

Two extremely halophilic archaeal strains, designated TNN44T and TNN58T, were isolated from Tainan marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-stain-negative; colonies were red-pigmented. Strains TNN44T and TNN58T were able to grow at 20–50 °C (optimum 37 °C for both), in the presence of 1.4–5.1 M NaCl (optimum 3.4–3.9 M NaCl) and at pH 5.5–9.0 (optimum pH 6.5–7.0); neither strain required Mg2+ for growth. Cells lysed in distilled water. On the basis of 16S rRNA gene sequence analysis, strains TNN44T and TNN58T were related closely to Halogranum rubrum RO2-11T (96.2 and 97.2 % similarity, respectively). The polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate (trace), and one major glycolipid and one minor glycolipid chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively; other trace unidentified lipids were also detected. The DNA G+C content of strains TNN44T and TNN58T was 64.0 and 62.0 mol%, respectively. The level of DNA–DNA relatedness between strains TNN44T and TNN58T was 37.2 %, and these two strains showed a low level of DNA–DNA relatedness with Halogranum rubrum RO2-11T (40.6 and 44.4 %, respectively). Two novel species of the genus Halogranum are proposed to accommodate these two strains, Halogranum gelatinilyticum sp. nov. (type strain TNN44T  = CGMCC 1.10119T  = JCM 16426T) and Halogranum amylolyticum sp. nov. (type strain TNN58T  = CGMCC 1.10121T  = JCM 16428T).


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2007 ◽  
Vol 57 (11) ◽  
pp. 2453-2457 ◽  
Author(s):  
S. Kalyan Chakravarthy ◽  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two Gram-negative, vibrioid, phototrophic, purple non-sulfur strains, JA131T and JA135T, were isolated from marine habitats. Strain JA131T is non-motile but strain JA135T is motile by means of a pair of monopolar flagella. Both strains have an obligate requirement for NaCl for growth. The intracellular photosynthetic membranes of the two novel strains are of the vesicular type. Bacteriochlorophyll a and probably rhodovibrine are present as photosynthetic pigments. Niacin, thiamine and p-aminobenzoic acid are required as growth factors for both novel strains. Based on 16S rRNA gene sequence analysis, morphological and physiological characteristics, strains JA131T and JA135T are significantly different from each other and from other species of the genus Roseospira and thus represent two novel species for which the names Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. are proposed, respectively. The type strain of Roseospira visakhapatnamensis sp. nov. is JA131T (=ATCC BAA-1365T=JCM 14190T) and the type strain of Roseospira goensis sp. nov. is JA135T (=ATCC BAA-1364T=JCM 14191T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2010 ◽  
Vol 60 (8) ◽  
pp. 1721-1724 ◽  
Author(s):  
Jong-Sik Jin ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Masao Hattori ◽  
Yoshimi Benno

An equol-producing bacterium, strain DZET, which was isolated from human faeces, was characterized by morphological, biochemical and molecular methods. The isolate was Gram-positive, obligately anaerobic, non-spore-forming, asaccharolytic and rod-shaped. 16S rRNA gene sequence analysis showed 92.8, 91.0, 91.1 and 90.6 % similarities with Slackia faecicanis, Slackia exigua, Slackia heliotrinireducens and Slackia isoflavoniconvertens, respectively. Based on these data, we propose a novel species of the genus Slackia, Slackia equolifaciens sp. nov. The major cellular fatty acids are C14 : 0, C18 : 1 ω9c and C18 : 1 ω9c DMA (dimethyl acetal). The DNA G+C content of the strain is 60.8 mol%. The type strain of S. equolifaciens sp. nov. is DZET (=JCM 16059T =CCUG 58231T).


Sign in / Sign up

Export Citation Format

Share Document