scholarly journals Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats

2007 ◽  
Vol 57 (7) ◽  
pp. 1582-1589 ◽  
Author(s):  
Dimitry Yu. Sorokin ◽  
Tatjana P. Tourova ◽  
Gesche Braker ◽  
Gerard Muyzer

A novel group of moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing Gammaproteobacteria was found in sediments of various inland hypersaline lakes and a solar saltern. These bacteria were enriched and isolated with thiosulfate as electron donor and nitrate as electron acceptor at 2 M NaCl. Ten isolates (HLD strains) were long non-motile rods. They grew anaerobically as complete denitrifiers, and aerobically under micro-oxic conditions. Sulfate was the final product of thiosulfate and sulfide oxidation, and nitrite and N2O were intermediates of nitrate reduction to N2. The HLD strains grew optimally at pH 7.3–7.8, and at NaCl concentrations of 1.5–2.0 M. On the basis of phenotypic and genetic analysis, the moderately halophilic, thiodenitrifying isolates are proposed to be assigned to a new genus and species, Thiohalomonas denitrificans gen. nov., sp. nov. The type strain is HLD 2T (=DSM 15841T=UNIQEM U222T ). A single strain, HRhD 3spT, with vibrio-shaped cells, was obtained from a co-culture capable of complete denitrification of nitrate in the presence of either thiocyanate or thiosulfate as electron donor. It grew anaerobically with thiosulfate, reducing nitrate to nitrite, or under micro-oxic conditions at 1.0–2.5 M NaCl with an optimum at 1.0 M. Strain HRhD 3spT was genetically related to the HLD strains at the level of a separate species and is described as Thiohalomonas nitratireducens sp. nov. The type strain is HRhD 3spT (=DSM 16925T=UNIQEM U248T).

2004 ◽  
Vol 54 (5) ◽  
pp. 1735-1740 ◽  
Author(s):  
M. José Martínez-Cánovas ◽  
Emilia Quesada ◽  
Fernando Martínez-Checa ◽  
Ana del Moral ◽  
Victoria Béjar

Salipiger mucescens gen. nov., sp. nov. is a moderately halophilic, exopolysaccharide-producing, Gram-negative rod isolated from a hypersaline habitat in Murcia in south-eastern Spain. The bacterium is chemoheterotrophic and strictly aerobic (i.e. unable to grow under anaerobic conditions either by fermentation or by nitrate or fumarate respiration). It does not synthesize bacteriochlorophyll a. Catalase and phosphatase are positive. It does not produce acids from carbohydrates. It cannot grow with carbohydrates or amino acids as sole sources of carbon and energy. It grows best at 9–10 % w/v NaCl and requires the presence of Na+ but not Mg2+ or K+, although they do stimulate its growth somewhat when present. Its major fatty-acid component is 18 : 1ω7c (78·0 %). The predominant respiratory lipoquinone found in strain A3T is ubiquinone with ten isoprene units. The G+C content is 64·5 mol%. Phylogenetic analyses strongly indicate that this strain forms a distinct line within a clade containing the genus Roseivivax in the subclass α-Proteobacteria. The similarity value with Roseivivax halodurans and Roseivivax halotolerans is 94 %. In the light of the polyphasic evidence gathered in this study it is proposed that the isolate be classified as representing a new genus and species, Salipiger mucescens gen. nov., sp. nov. The proposed type strain is strain A3T (=CECT 5855T=LMG 22090T=DSM 16094T).


2021 ◽  
Vol 95 ◽  
Author(s):  
D.P. Barton ◽  
L. Smales ◽  
V. Lee ◽  
X. Zhu ◽  
S. Shamsi

Abstract The Tasmanian devil (Sarcophilus harrisii (Boitard)) is an endangered carnivorous marsupial, limited to the islands of Tasmania in southern Australia. The parasites of the Tasmanian devil are understudied. This study aimed to increase the knowledge of the nematode fauna of Tasmanian devils. Ten Tasmanian devils were examined for parasites from northern and southern Tasmania. Nematodes that were collected were morphologically characterized as two separate species. Molecular sequencing was undertaken to verify the identity of these species. A new genus and species of oxyurid nematode was collected from a single Tasmanian devil from the northern part of Tasmania. The nematode is differentiated from oxyurids described from other Australian amphibians, reptiles and marsupials by the characters of the male posterior end – that is, in having three pairs of caudal papillae, two pairs peri-cloacal, one large pair post-cloacal, a long tapering tail, a stout spicule and a gubernaculum and accessory piece, as well as its much larger overall size. Molecular sequencing was unsuccessful. The remaining nematodes collected from the Tasmanian devil in this study were all identified as Baylisascaris tasmaniensis Sprent, 1970, through morphology and molecular sequencing. This paper presents the first description of a new genus and species of oxyurid nematode from the Tasmanian devil, Sarcophiloxyuris longus n. gen., n. sp. The need to undertake more sampling of the parasites of endangered hosts, such as the Tasmanian devil, to assist with a better understanding of their conservation management, is discussed.


2005 ◽  
Vol 55 (3) ◽  
pp. 1027-1031 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Hye-Ryoung Kim ◽  
Byoung-Jun Yoon ◽  
...  

A moderately halophilic, Gram-positive, rod-shaped bacterium (BH030004T) was isolated from a solar saltern in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BH030004T belonged to the genus Pontibacillus. Chemotaxonomic data (DNA G+C content, 42 mol%; major isoprenoid quinone, MK-7; cell-wall type, A1γ-type meso-diaminopimelic acid; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0) also supported the affiliation of the isolate to the genus Pontibacillus. Although the 16S rRNA gene sequence similarity between strain BH030004T and Pontibacillus chungwhensis DSM 16287T was relatively high (99·1 %), physiological properties and DNA–DNA hybridization (about 7 % DNA–DNA relatedness) allowed genotypic and phenotypic differentiation of strain BH030004T from the type strain of P. chungwhensis. Therefore, strain BH030004T represents a novel species of the genus Pontibacillus, for which the name Pontibacillus marinus sp. nov. is proposed. The type strain is BH030004T (=KCTC 3917T=DSM 16465T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2320-2325 ◽  
Author(s):  
P. Anil Kumar ◽  
T. N. R. Srinivas ◽  
P. Pavan Kumar ◽  
S. Madhu ◽  
S. Shivaji

A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain LW7T, was isolated from a water sample collected at a depth of 4.5 m from Lonar Lake in Buldhana district, Maharastra, India. The cell suspension was dark-reddish orange due to the presence of carotenoids. The fatty acids were dominated by large amounts of iso-C15 : 0 (59.6 %) and iso-C17 : 0 3-OH (8.9 %). Strain LW7T contained MK-4 and MK-5 as the major respiratory quinones and phosphatidylglycerol and phosphatidylethanolamine as the major phospholipids. 16S rRNA gene sequence analysis indicated that Belliella baltica, a member of family ‘Cyclobacteriaceae’ (phylum Bacteroidetes), is the closest related species, with a sequence similarity of 94.0 % to the type strain. Other members of the family ‘Cyclobacteriaceae’ had sequence similarities of <93.3 %. Based on the above-mentioned phenotypic and phylogenetic characteristics, strain LW7T is proposed as a representative of a new genus and species, Nitritalea halalkaliphila gen. nov., sp. nov. The type strain of Nitritalea halalkaliphila is LW7T (=CCUG 57665T =JCM 15946T =NCCB 100279T). The genomic DNA G+C of strain LW7T is 49 mol%.


2006 ◽  
Vol 56 (5) ◽  
pp. 1117-1121 ◽  
Author(s):  
Cheng-Hui Xie ◽  
Akira Yokota

Strain DYT, which was isolated from garden soil in Japan, was subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene and the GyrB protein revealed that the closest relative of strain DYT was [Flavobacterium] ferrugineum Sickles and Shaw 1934, with 94.8 and 90.1 % similarity, respectively. The two strains had similar chemotaxonomic characteristics, with menaquinone 7 as the major quinone system, 47.2–48.9 mol% DNA G+C content and 15 : 0 iso, 15 : 1 iso, 17 : 0 iso 3-OH and summed feature 3 as the major fatty acids. Based on genotypic and phenotypic characteristics, [Flavobacterium] ferrugineum IAM 15098T could be clearly differentiated from other members of the genus Flavobacterium. Strain DYT and [Flavobacterium] ferrugineum IAM 15098T could be easily distinguished from neighbouring taxa by morphological features (non-motile, non-gliding and non-filamentous single cells). Therefore, it is proposed that [Flavobacterium] ferrugineum IAM 15098T and strain DYT represent two separate species of a new genus, Terrimonas gen. nov., with the names Terrimonas ferruginea comb. nov. (type species; type strain IAM 15098T=ATCC 13524T) and Terrimonas lutea sp. nov. (type strain DYT=IAM 15284T=CCTCC AB205006T), respectively.


Author(s):  
Suzanna L. Bräuer ◽  
Hinsby Cadillo-Quiroz ◽  
Rebekah J. Ward ◽  
Joseph B. Yavitt ◽  
Stephen H. Zinder

A novel acidiphilic, hydrogenotrophic methanogen, designated strain 6A8T, was isolated from an acidic (pH 4.0–4.5) and ombrotrophic (rain-fed) bog located near Ithaca, NY, USA. Cultures were dimorphic, containing thin rods (0.2–0.3 μm in diameter and 0.8–3.0 μm long) and irregular cocci (0.2–0.8 μm in diameter). The culture utilized H2/CO2 to produce methane but did not utilize formate, acetate, methanol, ethanol, 2-propanol, butanol or trimethylamine. Optimal growth conditions were near pH 5.1 and 35 °C. The culture grew in basal medium containing as little as 0.43 mM Na+ and growth was inhibited completely by 50 mM NaCl. To our knowledge, strain 6A8T is one of the most acidiphilic (lowest pH optimum) and salt-sensitive methanogens in pure culture. Acetate, coenzyme M, vitamins and yeast extract were required for growth. It is proposed that a new genus and species be established for this organism, Methanoregula boonei gen. nov., sp. nov. The type strain of Methanoregula boonei is 6A8T (=DSM 21154T =JCM 14090T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3771-3776 ◽  
Author(s):  
Om Prakash ◽  
Avinash Sharma ◽  
Yogesh Nimonkar ◽  
Yogesh S. Shouche

Micrococcus lactis and Zhihengliuella aestuarii were described independently in 2011. Their type strains showed high levels of 16S rRNA gene sequence similarity (99.3 %). Phylogenetic analysis revealed that M. lactis MCC 2278T and Z. aestuarii JCM 16166T formed a monophyletic group and showed distant relationships to other members of closely related genera such as Micrococcus, Zhihengliuella, Arthrobacter and Citricoccus. The presence of large proportions of iso-C14 : 0 and iso-C16 : 0 with small amounts of iso-C15 : 0 distinguished M. lactis MCC 2278T and Z. aestuarii JCM 16166T from other members of the genera Micrococcus and Zhihengliuella. Unlike other members of the genera Zhihengliuella and Micrococcus, M. lactis MCC 2278T and Z. aestuarii JCM 16166T showed growth at low concentrations of NaCl. Thus, based on distinctive phylogenetic, chemotaxonomic and physiological features of these two organisms in comparison with other members of the genera Micrococcus and Zhihengliuella, it is clear that they do not fit within the existing classification and deserve separate status. DNA–DNA hybridization between the two type strains was 63 %, indicating that they represent separate species. In this study, we propose the creation of a novel genus, Neomicrococcus gen. nov., to accommodate the two species with Neomicrococcus aestuarii gen. nov., comb. nov. (type strain JCM 16166T = KCTC 19557T) as the type species. Neomicrococcus lactis comb. nov. (type strain MCC 2278T = DSM 23694T) is also proposed.


2006 ◽  
Vol 56 (10) ◽  
pp. 2375-2380 ◽  
Author(s):  
Dimitry Yu. Sorokin ◽  
Tatjana P. Tourova ◽  
Tatjana V. Kolganova ◽  
Elizaveta M. Spiridonova ◽  
Ivan A. Berg ◽  
...  

Enrichments at 2 M NaCl and pH 7.5–8, with thiosulfate or sulfide as electron donor, inoculated with sediments from hypersaline chloride–sulfate lakes of the Kulunda Steppe (Altai, Russia) resulted in the domination of two different groups of moderately halophilic, chemolithoautotrophic, sulfur-oxidizing bacteria. Under fully aerobic conditions with thiosulfate, bacteria belonging to the genus Halothiobacillus dominated while, under microaerophilic conditions, a highly motile, short vibrio-shaped phenotype outcompeted the halothiobacilli. Three genetically and phenotypically highly similar vibrio-shaped isolates were obtained in pure culture and one of them, strain HL 5T, was identified as a member of the Thiomicrospira crunogena cluster by 16S rRNA gene sequencing. The new isolates were able to grow with thiosulfate as electron donor within a broad salinity range from 0.5 to 3.5 M NaCl with an optimum at 1.5 M and within a pH range from 6.5 to 8.5 with an optimum at pH 7.5–7.8. Comparative analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene sequences demonstrated that strain HL 5T possessed two genes, cbbL-1 and cbbL-2, of the form I RuBisCO and a cbbM gene of the form II RuBisCO, similar to the other members of the Thiomicrospira crunogena cluster. On the basis of phenotypic and genetic comparison, the new halophilic isolates are proposed to be placed into a novel species, Thiomicrospira halophila sp. nov. (type strain HL 5T=DSM 15072T=UNIQEM U 221T).


2004 ◽  
Vol 54 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Hana Yi ◽  
Jongsik Chun

Three marine strains of the Cytophaga–Flavobacterium–Bacteroides group, designated JC2050T, JC2051T and JC2052T, were obtained from a single sediment sample of getbol, the Korean tidal flat. Comparative 16S rDNA sequence studies revealed that the test strains were not closely related to any validly published genera and that these strains were only distantly related to the genus Cyclobacterium (88·7–91·2 %). Phylogenetic analyses demonstrated that the three getbol isolates formed a distinct monophyletic clade within the family Cytophagaceae. Physiological, biochemical and chemotaxonomic data also indicated that these three getbol isolates differed significantly from members of other genera and were sufficiently different from each other to be recognized as separate species. On the basis of polyphasic evidence, a new genus, Hongiella gen. nov., is proposed, with three novel species, Hongiella mannitolivorans sp. nov. (type strain JC2050T=IMSNU 14012T=DSM 15301T), Hongiella halophila sp. nov. (type strain JC2051T=IMSNU 14013T=DSM 15292T) and Hongiella ornithinivorans sp. nov. (type strain JC2052T=IMSNU 14014T=DSM 15282T). Hongiella mannitolivorans is the type species of the genus.


Sign in / Sign up

Export Citation Format

Share Document