scholarly journals Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius

2007 ◽  
Vol 57 (12) ◽  
pp. 2799-2804 ◽  
Author(s):  
Martha E. Trujillo ◽  
Reiner M. Kroppenstedt ◽  
Carmen Fernández-Molinero ◽  
Peter Schumann ◽  
Eustoquio Martínez-Molina

A study was conducted to determine the taxonomic status of six actinomycete strains isolated from root nodules of Lupinus angustifolius. The strains were filamentous, Gram-positive and produced single spores at the tip of the hyphae. Phylogenetic, chemotaxonomic and morphological analyses demonstrated that all six strains belonged to the genus Micromonospora. According to the 16S rRNA gene sequence data, the strains were divided into two clusters that are moderately related to Micromonospora mirobrigensis, Micromonospora matsumotoense and Micromonospora purpureochromogenes. Fatty acid patterns also supported the division of the strains, and significant differences between the two groups were found in the amounts of iso-15 : 0, iso-16 : 0, iso-16 : 1 and iso-17 : 0. Furthermore, the two groups showed physiological differences which included utilization of arabinose, trehalose, alanine and sucrose and xylan hydrolysis. Finally, DNA–DNA hybridization and ribotyping studies confirmed that each group represents a novel species. Based on the genotypic and phenotypic data, the novel species Micromonospora lupini sp. nov. (type strain Lupac 14NT =DSM 44874T =LMG 24055T) and Micromonospora saelicesensis sp. nov. (type strain Lupac 09T =DSM 44871T =LMG 24056T) are proposed.

2011 ◽  
Vol 61 (7) ◽  
pp. 1667-1670 ◽  
Author(s):  
M. Tseng ◽  
H. C. Liao ◽  
W. P. Chiang ◽  
G. F. Yuan

A novel actinomycete, designated strain 06182M-1T, was isolated from a mangrove soil sample collected from Chiayi County in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed levels of similarity of 97.0–98.8 % to the type strains of recognized species of the genus Isoptericola. Chemotaxonomic data also supported the placement of strain 06182M-1T within the genus Isoptericola. However, the low levels of DNA–DNA relatedness between the novel strain and the type strains of recognized species of the genus Isoptericola, in combination with differential phenotypic data, demonstrate that strain 06182M-1T represents a novel species of the genus Isoptericola, for which the name Isoptericola chiayiensis sp. nov. is proposed. The type strain is 06182M-1T ( = BCRC 16888T  = KCTC 19740T).


2006 ◽  
Vol 56 (5) ◽  
pp. 1123-1126 ◽  
Author(s):  
Wasu Pathom-aree ◽  
Yuichi Nogi ◽  
Iain C. Sutcliffe ◽  
Alan C. Ward ◽  
Koki Horikoshi ◽  
...  

The taxonomic status of an actinomycete isolated from sediment collected from the Mariana Trench was established using a combination of genotypic and phenotypic data. Isolate MT8T had chemotaxonomic and morphological properties consistent with its classification in the genus Williamsia, and formed a distinct phyletic line in the 16S rRNA gene tree together with the type strain of Williamsia muralis. The isolate was readily distinguished from the latter, and from representatives of other Williamsia species, using DNA–DNA relatedness and phenotypic criteria. Predominant cellular fatty acids were oleic, palmitic and tuberculostearic acids and a hexadecenoic acid. The DNA G+C content was 65.2 mol%. It is apparent that the isolate belongs to a novel species of Williamsia. Strain MT8T (=DSM 44944T=NCIMB 14085T) was thus considered to be the type strain of a novel species in the genus Williamsia, for which the name Williamsia marianensis sp. nov. is proposed.


2010 ◽  
Vol 60 (5) ◽  
pp. 1135-1140 ◽  
Author(s):  
Jia Tong ◽  
Chengxu Liu ◽  
Paula H. Summanen ◽  
Huaxi Xu ◽  
Sydney M. Finegold

A coryneform strain, 06-1773OT (=WAL 19168T), derived from a groin abscess sample was characterized using phenotypic and molecular taxonomic methods. Comparative analyses revealed more than 3 % divergence of the 16S rRNA gene sequence and about 10 % divergence of the partial rpoB gene sequence from the type strain of Corynebacterium glucuronolyticum. The strain could also be differentiated from C. glucuronolyticum by a set of phenotypic properties. A DNA–DNA relatedness study between strain WAL 19168T and C. glucuronolyticum CCUG 35055T showed a relatedness value of 13.3 % (13.7 % on repeat analysis). The genotypic and phenotypic data show that the strain merits classification within a novel species of Corynebacterium. We propose the name Corynebacterium pyruviciproducens sp. nov. for the novel species. The type strain is 06-1773OT (=WAL 19168T =CCUG 57046T =ATCC BAA-1742T).


2006 ◽  
Vol 56 (3) ◽  
pp. 535-539 ◽  
Author(s):  
Hye Yoon Park ◽  
Kwang Kyu Kim ◽  
Long Jin ◽  
Sung-Taik Lee

A xylanolytic bacterium, US15T, was isolated from swamp forest soil in Ulsan, Korea. The cells of the novel strain were Gram-positive, non-motile, short-rod-shaped and showed chemotaxonomic properties that were consistent with its classification in the genus Microbacterium. Chemotaxonomic results showed MK-12 and MK-11 as major menaquinones, predominating iso- and anteiso-branched cellular fatty acids, glucose, galactose and mannose as cell-wall sugars, peptidoglycan-type B2β with glycolyl residues and a DNA G+C content of 66·5 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain US15T was closely related to Microbacterium arborescens IFO 3750T, Microbacterium imperiale IFO 12610T and Microbacterium ulmi LMG 20991T (96·9, 96·8 and 96·2 % similarities, respectively), and formed a separate lineage within the genus Microbacterium. Combined genotypic and phenotypic data showed that strain US15T (=DSM 16915T=KCTC 19080T) merits recognition as the type strain of a novel species within the genus Microbacterium, for which the name Microbacterium paludicola sp. nov. is proposed.


2005 ◽  
Vol 55 (5) ◽  
pp. 2057-2061 ◽  
Author(s):  
Danielle Saintpierre-Bonaccio ◽  
Hamid Amir ◽  
René Pineau ◽  
G. Y. Annie Tan ◽  
Michael Goodfellow

The taxonomic position of an actinomycete isolated from a brown hypermagnesian ultramafic soil was examined using a polyphasic approach. The organism, which was designated SBHS Strp1T, was found to have chemical and morphological properties typical of Amycolatopsis strains. It was most closely associated with Amycolatopsis kentuckyensis, Amycolatopsis lexingtonensis, Amycolatopsis rifamycinica, Amycolatopsis pretoriensis and Amycolatopsis tolypomycina on the basis of 16S rRNA gene sequence data, and showed a unique pattern of phenotypic properties that distinguished it from the type strains of these taxa. The combined genotypic and phenotypic data show that the organism merits description as a novel species of Amycolatopsis. The name proposed for the novel species is Amycolatopsis plumensis sp. nov.; the type strain is SBHS Strp1T (=DSM 44776T=NRRL B-24324T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1191-1195 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
Byung-Yong Kim ◽  
...  

Two strains of pink-coloured bacteria, 5516T-9T and 5516T-11T, were isolated from an air sample collected in Korea. The taxonomic status of these novel strains was investigated by means of a polyphasic approach. The novel strains were Gram-positive, aerobic, non-spore-forming and coccus-shaped bacteria. The DNA G+C contents of strains 5516T-9T and 5516T-11T were 61.0 and 59.3 mol%, respectively. The major isoprenoid quinone for both strains was MK-8. Strain 5516T-9T contained summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C16 : 0 and iso-C17 : 1 ω9c, and strain 5516T-11T contained summed feature 3, iso-C17 : 1 ω9c, C17 : 1 ω8c and C15 : 1 ω6c as the major fatty acids (>10 %). The polar lipid patterns of both strains were similar, comprising one phospholipid and one aminophospholipid as the major components. Phylogenetic analyses using 16S rRNA gene sequences showed that both novel strains were affiliated to the genus Deinococcus. Strain 5516T-9T exhibited the highest sequence similarity with Deinococcus marmoris DSM 12784T (96.8 %) and strain 5516T-11T showed the highest sequence similarity with Deinococcus saxicola DSM 15974T (94.5 %). The sequence similarity between strains 5516T-9T and 5516T-11T was 94.7 %. On the basis of the data presented, it is evident that both strains represent separate novel species of the genus Deinococcus for which the names Deinococcus aerolatus sp. nov. (type strain 5516T-9T=KACC 12745T=JCM 15442T) and Deinococcus aerophilus sp. nov. (type strain 5516T-11T=KACC 12746T=JCM 15443T) are proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 815-819 ◽  
Author(s):  
P. Kämpfer ◽  
K. Denger ◽  
A. M. Cook ◽  
S.-T. Lee ◽  
U. Jäckel ◽  
...  

Comparative 16S rRNA gene sequence analysis indicates that two distinct sublineages exist within the genus Alcaligenes: the Alcaligenes faecalis lineage, comprising Alcaligenes aquatilis and A. faecalis (with the three subspecies A. faecalis subsp. faecalis, A. faecalis subsp. parafaecalis and A. faecalis subsp. phenolicus), and the Alcaligenes defragrans lineage, comprising A. defragrans. This phylogenetic discrimination is supported by phenotypic and chemotaxonomic differences. It is proposed that the A. defragrans lineage constitutes a distinct genus, for which the name Castellaniella gen. nov. is proposed. The type strain for Castellaniella defragrans gen. nov., comb. nov. is 54PinT (=CCUG 39790T=CIP 105602T=DSM 12141T). Finally, on the basis of data from the literature and new DNA–DNA hybridization and phenotypic data, the novel species Castellaniella denitrificans sp. nov. (type strain NKNTAUT=DSM 11046T=CCUG 39541T) is proposed for two strains previously identified as strains of A. defragrans.


2006 ◽  
Vol 56 (4) ◽  
pp. 827-839 ◽  
Author(s):  
Sophie Mantelin ◽  
Marion Fischer-Le Saux ◽  
Frédéric Zakhia ◽  
Gilles Béna ◽  
Sophie Bonneau ◽  
...  

Gram-negative bacteria were isolated from the rhizoplane of Brassica napus in France and from root nodules of Argyrolobium uniflorum, Astragalus algerianus and Lathyrus numidicus growing in the infra-arid zone of southern Tunisia. Based on phylogenetic analysis of the 16S rRNA gene sequences, the seven isolates belong to the Alphaproteobacteria and are related to Phyllobacterium myrsinacearum strains. The isolates formed three clusters; clusters A and C consist of Tunisian strains, whereas cluster B consists of two strains from Brassica napus from France. Phylogenetic reconstruction based on the atpD gene strongly supports their affiliation to the genus Phyllobacterium. DNA–DNA hybridizations revealed that (i) none of the isolates belong to the species P. myrsinacearum, (ii) clusters A and C represent two distinct genomospecies and (iii) the two strains of cluster B represent two separate genomospecies. Distinctive phenotypic features were deduced from numerical analysis of phenotypic data. Based on this polyphasic approach, four novel species are proposed: Phyllobacterium leguminum sp. nov. (type strain ORS 1419T=CFBP 6745T=LMG 22833T), Phyllobacterium ifriqiyense sp. nov. (type strain STM 370T=CFBP 6742T=LMG 22831T), Phyllobacterium brassicacearum sp. nov. (type strain STM 196T=CFBP 5551T=LMG 22836T) and Phyllobacterium bourgognense sp. nov. (type strain STM 201T=CFBP 5553T=LMG 22837T). The description of the genus Phyllobacterium is emended accordingly.


Author(s):  
Nagamani Bora ◽  
Marc Vancanneyt ◽  
Roberto Gelsomino ◽  
Jean Swings ◽  
Noelle Brennan ◽  
...  

Seven Gram-positive, coryneform bacteria with virtually identical whole-organism protein patterns were isolated from the surface of smear-ripened cheeses. Representatives of these strains were the subject of a polyphasic study designed to establish their taxonomic status. The organisms formed a distinct branch in the Microbacteriaceae 16S rRNA gene tree and were most closely related to members of the genus Agrococcus, sharing sequence similarities of 95.4–98.7 %. The chemotaxonomic profiles of the strains were consistent with their classification in the genus Agrococcus. The combined genotypic and phenotypic data show that the isolates should be classified in the genus Agrococcus as representatives of a novel species. The name Agrococcus casei sp. nov. is proposed for this taxon. Isolate R-17892t2T (=DSM 18061T=LMG 22410T) is the type strain of Agrococcus casei sp. nov.


2007 ◽  
Vol 57 (7) ◽  
pp. 1635-1639 ◽  
Author(s):  
Wei Sun ◽  
Ying Huang ◽  
Yue-Qin Zhang ◽  
Zhi-Heng Liu

An actinomycete, strain 4776T, was isolated from soil collected from Emei Mountain in Sichuan Province, China. The taxonomic status of this strain was established using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence indicated that the novel isolate belongs to the genus Streptomyces and consistently falls into a clade together with Streptomyces prasinopilosus DSM 40098T, Streptomyces prasinus JCM 4603T, Streptomyces bambergiensis DSM 40590T, Streptomyces hirsutus DSM 40095T and Streptomyces cyanoalbus DSM 40198T. However, DNA–DNA relatedness and phenotypic data distinguished strain 4776T from these phylogenetically related type strains. It is therefore concluded that strain 4776T (=CGMCC 4.3504T=DSM 41884T) represents a novel species of the genus Streptomyces, for which the name Streptomyces emeienseis sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document