scholarly journals Collinsella vaginalis sp. nov. strain Marseille-P2666T, a new member of the Collinsella genus isolated from the genital tract of a patient suffering from bacterial vaginosis

2019 ◽  
Vol 69 (4) ◽  
pp. 949-956 ◽  
Author(s):  
Awa Diop ◽  
Khoudia Diop ◽  
Enora Tomei ◽  
Nicholas Armstrong ◽  
Florence Bretelle ◽  
...  

A strictly anaerobic, Gram-stain-positive, non motile and non-spore-forming rod-shaped bacterium, strain Marseille-P2666T, was isolated using the culturomics approach from a vaginal sample of a French patient suffering from bacterial vaginosis. Cells were saccharolytic and were negative for catalase, oxidase, urease, nitrate reduction, indole production, hydrolysis of aesculin and gelatin. Strain Marseille-P2666T exhibited 97.04 % 16S rRNA sequence similarity to Collinsella tanakaei type strain YIT 12063T, the phylogenetically closest species with standing in nomenclature. The major fatty acids were C18:1ω9 (38 %), C16 : 0 (24 %) and C18 : 0 (19 %). The G+C content of the genome sequence of strain Marseille-P2666T is 64.6 mol%. On the basis of its phenotypic, phylogenetic and genomic features, strain Marseille-P2666T (=CSUR 2666T=DSM103342T) was classified as type strain of a novel species within the genus Collinsella for which the name Collinsella vaginalis sp. nov. is proposed.

Author(s):  
Etienne V. Doll ◽  
Lena Staib ◽  
Christopher Huptas ◽  
Siegfried Scherer ◽  
Mareike Wenning

Two strains of a Gram-staining-positive species were isolated from German bulk tank milk. On the basis of their 16S rRNA sequences they were affiliated to the genus Facklamia but could not be assigned to any species with a validly published name. Facklamia miroungae ATCC BAA-466T (97.3 % 16S rRNA sequence similarity), Facklamia languida CCUG 37842T (96.9 %), and Facklamia hominis CCUG 36813T (96.6 %) are the closest relatives. In the 16S rRNA phylogeny and in the core-genome phylogeny strains WS 5301T and WS 5302 form a well-supported, separate lineage. Pairwise average nucleotide identity calculated using MUMmer (ANIm) between WS 5301T and type strains of other Facklamia species is well below the species cut-off (95 %) and ranges from 83.4 to 87.7 %. The DNA G+C content of the type strain is 36.4 mol% and the assembly size of the genome is 2.2 Mb. Cells of WS 5301T are non-motile, non-endospore-forming, oxidase-negative, catalase-negative and facultatively anaerobic cocci. The fastidious species grows at 10–40 °C and with up to 7.0 % (w/v) NaCl in BHI supplemented with 5 g l−1 yeast extract. Major polar lipids are phosphatidylglycerol, diphosphatidylglycerol and two glycolipids. Predominant fatty acids are C16 : 1ω9c and C18 : 1ω9c. On the basis of their genomic, physiological and chemotaxonomic characteristics the strains examined in this study represent the same, hitherto unknown species. We propose the name Facklamia lactis sp. nov. for which WS 5301T (=DSM 111018T=LMG 31861T) is the type strain and WS 5302 (=DSM 111019=LMG 31862) is an additional strain of this novel species.


Author(s):  
Shan Shan Qi ◽  
Margo Cnockaert ◽  
Aurélien Carlier ◽  
Peter Vandamme

Three rod-shaped, non-spore-forming, yellow or pale-yellow pigmented bacteria with distinct MALDI-TOF mass spectra were isolated from the phyllosphere of Arabidopsis thaliana seedlings. Their 16S rRNA gene sequences demonstrated that these isolates belong to the genus Pedobacter . The nearest phylogenetic neighbours of strain LMG 31462T were Pedobacter steynii DSM 19110T (98.3 % 16S rRNA sequence similarity) and Pedobacter caeni LMG 22862T (98.3 %); the nearest phylogenetic neighbours of strain LMG 31463T were Pedobacter panaciterrae Gsoil 042T (98.3 %) and Pedobacter nutrimenti DSM 27372T (98.1 %); and the nearest phylogenetic neighbours of strain LMG 31464T were Pedobacter boryungensis BR-9T (99.0 %) and Pedobacter daejeonensis THG-DN3.18T (98.7 %). Average nucleotide identity analyses between the whole genome sequences of the three strains and of the type strains of their respective nearest-neighbour taxa yielded values well below the species delineation threshold and thus confirmed that the three strains represented a novel Pedobacter species each. An extensive phenotypic comparison and an analysis of whole-cell fatty acid components yielded distinctive phenotypic characteristics for each of these strains. We therefore propose to classify these isolates as three novel species, for which we propose the names Pedobacter gandavensis with LMG 31462T (=R-74704T=CECT 30149T) as the type strain, Pedobacter foliorum with LMG 31463T (=R-74623T=CECT 30150T) as the type strain and Pedobacter planticolens with LMG 31464T (=R-74626T=CECT 30151T) as the type strain.


2020 ◽  
Vol 70 (5) ◽  
pp. 3455-3461 ◽  
Author(s):  
Qiang Xu ◽  
Fan Jiang ◽  
Xuyang Da ◽  
Yumin Zhang ◽  
Yingchao Geng ◽  
...  

A Gram-stain-negative, rod-shaped, green-pigmented, aerobic and motile bacterium, strain R3-44T, was isolated from Arctic tundra soil. Stain R3-44T clustered closely with members of the genus Chitinimonas , which belongs to the family Burkholderiaceae , and showed the highest 16S rRNA sequence similarity to Chitinimonas naiadis AR2T (96.10%). Strain R3-44T grew optimally at pH 7.0, 28 °C and in the presence of 0–0.5 % (w/v) NaCl. The predominant respiratory isoprenoid quinone of strain R3-44T was identified as ubiquinone Q-8. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, unidentified aminolipid and unidentified phospholipid. The main fatty acids were summed feature 3 (comprising C16 : 1  ω7c and/or C16 : 1  ω6c, 40.6 %) and C16 : 0 (29.3 %). The DNA G+C content of strain R3-44T was 60.8 mol%. On the basis of the evidence presented in this study, strain R3-44T represents a novel species of the genus Chitinimonas , for which the name Chitinimonas arctica sp. nov. is proposed, with the type strain R3-44T (=CCTCC AB 2010422T=KCTC 72602T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1450-1456 ◽  
Author(s):  
Maria V. Sizova ◽  
Paul Muller ◽  
Nicolai Panikov ◽  
Manolis Mandalakis ◽  
Tine Hohmann ◽  
...  

A strictly anaerobic Gram-stain-variable but positive by structure, non-spore-forming bacterium designated Lachnospiraceae bacterium ACC2 strain DSM 24645T was isolated from human subgingival dental plaque. Bacterial cells were 4–40 µm long non-motile rods, often swollen and forming curved filaments up to 200 µm. Cells contained intracellular, poorly crystalline, nanometre-sized iron- and sulfur-rich particles. The micro-organism was able to grow on yeast extract, trypticase peptone, milk, some sugars and organic acids. The major metabolic end-products of glucose fermentation were butyrate, lactate, isovalerate and acetate. The growth temperature and pH ranges were 30–42 °C and 4.9–7.5, respectively. Major fatty acids were C14 : 0, C14 : 0 DMA (dimethyl aldehyde), C16 : 0, C16 : 1ω7c DMA. The whole-cell hydrolysate contained meso-diaminopimelic acid, indicating peptidoglycan type A1γ. The DNA G+C content was calculated to be 55.05 mol% from the whole-genome sequence and 55.3 mol% as determined by HPLC. There were no predicted genes responsible for biosynthesis of respiratory lipoquinones, mycolic acids and lipopolysaccharides. Genes associated with synthesis of teichoic and lipoteichoic acids, diaminopimelic acid, polar lipids and polyamines were present. According to the 16S rRNA gene sequence phylogeny, strain DSM 24645T formed, together with several uncultured oral clones, a separate branch within the family Lachnospiraceae , with the highest sequence similarity to the type strain of Moryella indoligenes at 94.2 %. Based on distinct phenotypic and genotypic characteristics, we suggest that strain DSM 24645T represents a novel species in a new genus, for which the name Stomatobaculum longum gen. nov., sp. nov. is proposed. The type strain of Stomatobaculum longum is DSM 24645T ( = HM-480T; deposited in BEI Resources, an NIH collection managed by the ATCC).


Author(s):  
Muhammed Duman ◽  
Magdalena Mulet ◽  
Soner Altun ◽  
Izzet Burcin Saticioglu ◽  
Margarita Gomila ◽  
...  

Six Gram negative, motile bacteria were isolated from rainbow trout (Oncorhynchus mykiss). The 16S rRNA sequence similarity values grouped them in the Pseudomonas mandelii (strains P49, P50T, 154aT and P154b), Pseudomonas fluorescens (strain P115T) and Pseudomonas koreensis (strain P155T) phylogenetic subgroups in the genus Pseudomonas . The DNA G+C content ranged from 58.5 to 60 mol%. The strains were characterized phenotypically using API 20NE and Biolog GENIII tests, and chemotaxonomically by their whole-cell MALDI-TOF MS protein profiles and fatty acid contents. Multi-locus sequence analysis with four housekeeping gene sequences (rpoD, rpoB, gyrB and 16S rRNA) together with genome comparisons by average nucleotide identity and genome-to-genome distance calculations were performed. Results showed that the similarity values of these strains to known species type strains were lower than the thresholds established for species in the genus Pseudomonas . Based on these data, we concluded that strains P49, P50T, P115T, P154aT, P154b and P155T belonged to four novel species. The names proposed are: Pseudomonas piscium sp. nov. for strains P49 and P50T with P50T (=CECT 30175T=CCUG 74871T) as the type strain; Pseudomonas pisciculturae sp. nov. for strain P115T (CECT 30173T=CCUG 74873T); Pseudomonas mucoides sp. nov. for strains P154aT and P154b with P154aT (=CECT 30177T=CCUG 74874T) as the type strain; and Pseudomonas neuropathica sp. nov. for strain P155T (=CECT 30178T=CCUG 74875T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 220-224 ◽  
Author(s):  
Binhui Jiang ◽  
Xin Zhao ◽  
Jinliang Liu ◽  
Lili Fu ◽  
Chengcheng Yang ◽  
...  

A Gram-stain-positive, aerobic or facultatively anaerobic, rod-shaped, non-motile, endospore-forming bacterium, strain A9T, was isolated in 1996 from a soil sample collected under a peach tree in Qingnian Park in Shenyang, PR China, and its taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Paenibacillus , and was most closely related to the type strain of Paenibacillus hunanensis with a 16S rRNA gene sequence similarity of 96.7 % and a DNA–DNA relatedness value of 51.6 %. The major polar lipids of strain A9T were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C15 : 0. The DNA G+C content was 51.9 mol%. Based on these results, it is concluded that strain A9T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus shenyangensis sp. nov. is proposed, with A9T ( = JCM 19307T = CGMCC 2040T) as the type strain.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Author(s):  
Peter Kämpfer ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Meina Neumann-Schaal ◽  
Alexis Criscuolo ◽  
...  

A Gram-positive, non-spore-forming actinobacterium (IMT-300T) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300T was shown to belong to the genus Leucobacter and was closely related to the type strain of ‘Leucobacter margaritiformis’ L1T (97.8%). Similarity to all other type strains of Leucobacter species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the IMT-300T genome assembly and those of the closest relative Leucobacter type strain were 81.4 and 23.3 % ( Leucobacter chironomi ), respectively. The peptidoglycan of strain IMT-300T contained l-2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, d- and l-alanine and d-glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300T contained the major fatty acids C15 : 0 anteiso, C16 : 0 iso and C17 : 0 anteiso, like other members of the genus Leucobacter . The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300T from the most closely related Leucobacter species. Strain IMT-300T represents a novel Leucobacter species, for which we propose the name Leucobacter soli sp. nov., with the type strain IMT-300T (CIP 111803T=DSM 110505T=CCM 9020T=LMG 31600T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2396-2404 ◽  
Author(s):  
Ana Faria Tomás ◽  
Dimitar Karakashev ◽  
Irini Angelidaki

An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01T, was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5–2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h−1. DNA G+C content was 34.2 mol%. Strain DTU01T could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01T was shown to be closely related to Thermoanaerobacter mathranii A3T, Thermoanaerobacter italicus Ab9T and Thermoanaerobacter thermocopriae JT3-3T, with 98–99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01T as a representative of a novel species within the genus Thermoanaerobacter , for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01T ( = DSM 25963T = KCTC 4529T = VKM B-2752T = CECT 8142T).


Sign in / Sign up

Export Citation Format

Share Document