scholarly journals Chitinimonas arctica sp. nov., isolated from Arctic tundra soil

2020 ◽  
Vol 70 (5) ◽  
pp. 3455-3461 ◽  
Author(s):  
Qiang Xu ◽  
Fan Jiang ◽  
Xuyang Da ◽  
Yumin Zhang ◽  
Yingchao Geng ◽  
...  

A Gram-stain-negative, rod-shaped, green-pigmented, aerobic and motile bacterium, strain R3-44T, was isolated from Arctic tundra soil. Stain R3-44T clustered closely with members of the genus Chitinimonas , which belongs to the family Burkholderiaceae , and showed the highest 16S rRNA sequence similarity to Chitinimonas naiadis AR2T (96.10%). Strain R3-44T grew optimally at pH 7.0, 28 °C and in the presence of 0–0.5 % (w/v) NaCl. The predominant respiratory isoprenoid quinone of strain R3-44T was identified as ubiquinone Q-8. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, unidentified aminolipid and unidentified phospholipid. The main fatty acids were summed feature 3 (comprising C16 : 1  ω7c and/or C16 : 1  ω6c, 40.6 %) and C16 : 0 (29.3 %). The DNA G+C content of strain R3-44T was 60.8 mol%. On the basis of the evidence presented in this study, strain R3-44T represents a novel species of the genus Chitinimonas , for which the name Chitinimonas arctica sp. nov. is proposed, with the type strain R3-44T (=CCTCC AB 2010422T=KCTC 72602T).

Author(s):  
Yongping Zhang ◽  
Xiaoya Peng ◽  
Kun Qin ◽  
Jia Liu ◽  
Qiang Xu ◽  
...  

Strain Q3-56T, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56T grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56T belonged to the genus Dyadobacter . Strain Q3-56T showed the highest sequence similarities to Dyadobacter luticola T17T (96.58 %), Dyadobacter ginsengisoli Gsoil 043T (96.50 %), Dyadobacter flavalbus NS28T (96.43 %) and Dyadobacter bucti QTA69T (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56T was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1  ω7c/C16 : 1  ω6c), iso-C15 : 0, C16 : 1  ω5c and iso-C16 : 1 3-OH. On the basis of the evidence presented in this study, a novel species of the genus Dyadobacter , Dyadobacter sandarakinus sp. nov., is proposed, with the type strain Q3-56T (=CCTCC AB 2019271T=KCTC 72739T). Emended descriptions of Dyadobacter alkalitolerans , Dyadobacter koreensis and Dyadobacter psychrophilus are also provided.


2019 ◽  
Vol 69 (4) ◽  
pp. 949-956 ◽  
Author(s):  
Awa Diop ◽  
Khoudia Diop ◽  
Enora Tomei ◽  
Nicholas Armstrong ◽  
Florence Bretelle ◽  
...  

A strictly anaerobic, Gram-stain-positive, non motile and non-spore-forming rod-shaped bacterium, strain Marseille-P2666T, was isolated using the culturomics approach from a vaginal sample of a French patient suffering from bacterial vaginosis. Cells were saccharolytic and were negative for catalase, oxidase, urease, nitrate reduction, indole production, hydrolysis of aesculin and gelatin. Strain Marseille-P2666T exhibited 97.04 % 16S rRNA sequence similarity to Collinsella tanakaei type strain YIT 12063T, the phylogenetically closest species with standing in nomenclature. The major fatty acids were C18:1ω9 (38 %), C16 : 0 (24 %) and C18 : 0 (19 %). The G+C content of the genome sequence of strain Marseille-P2666T is 64.6 mol%. On the basis of its phenotypic, phylogenetic and genomic features, strain Marseille-P2666T (=CSUR 2666T=DSM103342T) was classified as type strain of a novel species within the genus Collinsella for which the name Collinsella vaginalis sp. nov. is proposed.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1089-1095 ◽  
Author(s):  
Markus Haber ◽  
Sigal Shefer ◽  
Assunta Giordano ◽  
Pierangelo Orlando ◽  
Agata Gambacorta ◽  
...  

Two bacterial strains, VI.14 and VIII.04T, were isolated from the Mediterranean sponge Axinella verrucosa collected off the Israeli coast near Sdot Yam. The non-motile, aerobic, Gram-negative isolates were oxidase-negative and catalase-positive, and formed golden-brown colonies on marine agar 2216. The pigment was neither diffusible nor flexirubin-like. Strain VIII.04T grew at 15–37 °C, at pH 6.0–9.0, in the presence of 20–50 g NaCl l−1 and 20–80 g sea salts l−1, The spectrum was narrower for strain VI.14, with growth at pH 7.0–8.0. and in the presence of 30–50 g NaCl l−1 and 30–70 g sea salts l−1. The predominant fatty acid (>50 %) in both strains was iso-C15 : 0, and the major respiratory quinone was MK-6. The DNA G+C content was 30.7 and 31.1 mol% for VIII.04T and VI.14, respectively. Results from 16S rRNA sequence similarity and phylogenetic analyses indicated that both strains are closely related to members of the family Flavobacteriaceae within the phylum Bacteroidetes , with as much as 91.7 % 16S rRNA sequence similarity. On the basis of data from the polyphasic analysis, we suggest that the strains represent a novel species in a new genus within the family Flavobacteriaceae , for which the name Aureivirga marina gen. nov., sp. nov. is proposed. Strain VIII.04T ( = ATCC BAA-2394T = LMG 26721T) is the type strain of Aureivirga marina.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2088-2094 ◽  
Author(s):  
V. Bhumika ◽  
T. N. R. Srinivas ◽  
K. Ravinder ◽  
P. Anil Kumar

A novel marine, Gram-stain-negative, oxidase- and catalase- positive, rod-shaped bacterium, designated strain AK6T, was isolated from marine aquaculture pond water collected in Andhra Pradesh, India. The fatty acids were dominated by iso-C15 : 0, iso-C17 : 1ω9c, iso-C15 : 1 G, iso-C17 : 0 3-OH and anteiso-C15 : 0. Strain AK6T contained MK-7 as the sole respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and seven unidentified lipids as polar lipids. The DNA G+C content of strain AK6T was 45.6 mol%. Phylogenetic analysis showed that strain AK6T formed a distinct branch within the family Cyclobacteriaceae and clustered with Aquiflexum balticum DSM 16537T and other members of the family Cyclobacteriaceae . 16S rRNA gene sequence analysis confirmed that Aquiflexum balticum DSM 16537T was the nearest neighbour, with pairwise sequence similarity of 90.1 %, while sequence similarity with the other members of the family was <88.5 %. Based on differentiating phenotypic characteristics and phylogenetic inference, strain AK6T is proposed as a representative of a new genus and species of the family Cyclobacteriaceae , as Mariniradius saccharolyticus gen. nov., sp. nov. The type strain of Mariniradius saccharolyticus is AK6T ( = MTCC 11279T = JCM 17389T). Emended descriptions of the genus Aquiflexum and Aquiflexum balticum are also proposed.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4016-4020 ◽  
Author(s):  
Maki Teramoto ◽  
Miyuki Nishijima

A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, designated strain 2-3T, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. This strain grew well with starch. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family Rhodobacteraceae and that the strain was related most closely to the genus Pacificibacter (94.0 % sequence similarity to the type strain). The DNA G+C content was 52.4 mol%. The major fatty acids were C18 : 1ω7c, C14 : 0 and C16 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid and one unidentified phospholipid. The major isoprenoid quinone was Q-10. Strain 2-3T did not grow at 4 or 35 °C, while the type strain of the type species of the genus Pacificibacter grows at both temperatures. From the taxonomic data obtained in this study, it is proposed that strain 2-3T be placed into a novel genus and species named Amylibacter marinus gen. nov., sp. nov. in the family Rhodobacteraceae . The type strain of Amylibacter marinus is 2-3T ( = NBRC 110140T = LMG 28364T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1528-1535 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A Gram-staining-negative, strictly aerobic, non-motile, yellow-pigmented bacterium, designated strain M091T, was isolated from seawater at Damupo beach in Pohang, Republic of Korea, and investigated using a polyphasic taxonomic approach. The novel strain grew optimally at 25 °C, pH 7.0–8.0, and in the presence of 3 % (w/v) NaCl. In a phylogenetic analysis based on 16S rRNA gene sequences, strain M091T formed a lineage within the family Flavobacteriaceae that was distinct from the most closely related genera of Flaviramulus (95.1 % sequence similarity), Algibacter (94.9–93.9 %), Mariniflexile (94.8–94.2 %), Winogradskyella (94.8–93.2 %), Lacinutrix (94.7–93.8 %) and Tamlana (94.7–92.9 %). The polar lipid profile of the novel strain comprised phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and seven unidentified lipids. The predominant cellular fatty acids were iso-C15 : 0 (20.5 %), iso-C17 : 0 3-OH (15.4 %), iso-C15 : 0 3-OH (12.4 %), C15 : 0 (10.9 %) and iso-C15 : 1 G (9.9 %). The genomic DNA G+C content of strain M091T was 34.4 mol% and the major respiratory quinone was MK-6. Based on phenotypic and genotypic data, strain M091T represents a new genus and novel species in the family Flavobacteriaceae , for which the name Postechiella marina gen. nov., sp. nov. is proposed. The type strain of the type species is M091T ( = KCTC 23537T = JCM 17630T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4562-4568 ◽  
Author(s):  
Thidarat Janthra ◽  
Jihye Baek ◽  
Jong-Hwa Kim ◽  
Jung-Hoon Yoon ◽  
Ampaitip Sukhoom ◽  
...  

A Gram-stain-negative, yellow-pigmented, non-spore-forming, non-motile, rod-shaped, catalase-positive, strictly aerobic bacterial strain, designated CAU 1491T, was isolated from seawater and its taxonomic position was examined using a polyphasic approach. Cells of strain CAU 1491T grew optimally at 30 °C, pH 7.5 and in 2.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence of CAU 1491T showed that it formed a distinct lineage within the family Flavobacteriaceae as a separate deep branch, with 97.0 % or lower sequence similarity to representatives of the genera Lacinutrix , Gaetbulibacter and Aquibacter . The major cellular fatty acids of strain CAU 1491T were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and summed feature 3. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine and an unidentified phospholipid. The strain contained MK-6 as the sole respiratory quinone. Genome sequencing revealed that strain CAU 1491T has a genome size of 3.13 Mbp and a G+C content of 32.4 mol%. On the basis of the phenotypic, chemotaxonomic and genomic data, strain CAU 1491T represents a new genus and species in the family Flavobacteriaceae for which the name Pontimicrobium aquaticum gen. nov., sp. nov. is proposed. The type strain of Pontimicrobium aquaticum is CAU 1491T (=KCTC 72003T=NBRC 113695T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2198-2203 ◽  
Author(s):  
A. Srinivas ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

A Gram-stain-negative, rod-shaped, phototrophic bacterium, strain JA793T, was isolated from rhizosphere soil of paddy. The strain was capable of growing phototrophically and chemotrophically. Bacteriochlorophyll-a and carotenoids of the spirilloxanthin series were present as photosynthetic pigments. The major fatty acid of strain JA793T was C18 : 1ω7c/C18 : 1ω6c (>65.7 %), with minor amounts of C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C20 : 2ω6,9c, C16 : 0 3-OH, C14 : 0 and C18 : 0 also present. Ubiquinone-10 and rhodoquinone-10 were present as primary quinones. Phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine were the major polar lipids, while minor amounts of amino lipids and unidentified lipids were also present. The G+C content of genomic DNA of strain JA793T was 68.7 mol%. 16S rRNA gene-based EzTaxon-e blast search analysis of strain JA793T indicated highest sequence similarity with members of the genus Rhodoplanes in the family Hyphomicrobiaceae of the class Alphaproteobacteria . Strain JA793T had high sequence similarity with Rhodoplanes elegans AS130T (98.6 %), Rhodoplanes roseus 941T (98 %), Rhodoplanes pokkaliisoli JA415T (97.5 %) and Rhodoplanes piscinae JA266T (97.3 %) and other members of the genus Rhodoplanes (<97 %). However, strain JA266T was related by <59 % (based on DNA–DNA hybridization) to Rhodoplanes elegans DSM 11907T ( = AS130T), Rhodoplanes roseus DSM 5909T ( = 941T), Rhodoplanes pokkaliisoli JA415T and Rhodoplanes piscinae JA266T. The genomic information was well supported by phenotypic and chemotaxonomic data to classify strain JA793T as a representative of a novel species in the genus Rhodoplanes , for which the name Rhodoplanes oryzae sp. nov. is proposed. The type strain is JA793T ( = NBRC 109406T = KCTC 15260T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 805-810 ◽  
Author(s):  
Manabu Kanno ◽  
Taiki Katayama ◽  
Naoki Morita ◽  
Hideyuki Tamaki ◽  
Satoshi Hanada ◽  
...  

An obligately anaerobic bacterium, designated strain GK12T, was isolated from an anaerobic digester in Fukagawa, Hokkaido Prefecture, Japan. The cells of strain GK12T were non-motile, non-spore-forming cocci that commonly occurred in chains. 16S rRNA gene sequence analysis revealed that strain GK12T was affiliated with the family Erysipelotrichaceae in the phylum Firmicutes and showed 91.8 % sequence similarity to the most closely related species, Faecalicoccus acidiformans . The strain grew at 30–50 °C (optimally at 40 °C) and at pH 5.5–8.5 (optimally at pH 7.5). The main end product of glucose fermentation was lactate. Yeast extract was required for growth. The strain contained C14 : 0, C14 : 0 1,1-dimethoxyalkane (DMA), C16 : 0 DMA and C18 : 0 DMA as the major cellular fatty acids (>10 % of the total). The polar lipid profile was composed of phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The whole-cell sugars were galactose, rhamnose and ribose. The cell-wall murein contained alanine, glutamic acid, lysine, serine and threonine, but not diaminopimelic acid. The G+C content of the genomic DNA was 47.7 mol%. Based on phenotypic, phylogenetic and chemotaxonomic properties, a novel genus and species, Catenisphaera adipataccumulans gen. nov., sp. nov., is proposed to accommodate strain GK12T ( = NBRC 108915T = DSM 25799T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1284-1288 ◽  
Author(s):  
Liang Wang ◽  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Hyung-Gwan Lee ◽  
Sung-Taik Lee

A Gram-positive, rod-shaped, xylanolytic, spore-forming bacterium, strain GTH-3T, was isolated from a tidal flat adjacent to Ganghwa Island, Republic of Korea, and was characterized to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain GTH-3T was shown to belong to the family Paenibacillaceae , being most closely related to the type strains of Paenibacillus ginsengisoli (94.9 %), Paenibacillus anaericanus (94.8 %), Paenibacillus urinalis (94.4 %), Paenibacillus cookii (94.2 %), Paenibacillus alvei (94.1 %) and Paenibacillus chibensis (94.0 %). The G+C content of the genomic DNA of strain GTH-3T was 45.9±0.2 mol% (mean±sd). The major menaquinone was MK-7. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phenotypic and chemotaxonomic data supported the affiliation of strain GTH-3T to the genus Paenibacillus . The results of physiological and biochemical tests allowed strain GTH-3T to be distinguished genotypically and phenotypically from recognized species of the genus Paenibacillus . Strain GTH-3T is therefore considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus sediminis sp. nov. is proposed. The type strain is GTH-3T ( = DSM 23491T  = LMG 25635T).


Sign in / Sign up

Export Citation Format

Share Document