Pseudoalteromonas ostreae sp. nov., a new bacterial species harboured by the flat oyster Ostrea edulis

Author(s):  
Héléna Cuny ◽  
Clément Offret ◽  
Amine M. Boukerb ◽  
Leila Parizadeh ◽  
Olivier Lesouhaitier ◽  
...  

Three bacterial strains, named hOe-66T, hOe-124 and hOe-125, were isolated from the haemolymph of different specimens of the flat oyster Ostrea edulis collected in Concarneau bay (Finistère, France). These strains were characterized by a polyphasic approach, including (i) whole genome analyses with 16S rRNA gene sequence alignment and pangenome analysis, determination of the G+C content, average nucleotide identity (ANI), and in silico DNA–DNA hybridization (isDDH), and (ii) fatty acid methyl ester and other phenotypic analyses. Strains hOe-66T, hOe-124 and hOe-125 were closely related to both type strains Pseudoalteromonas rhizosphaerae RA15T and Pseudoalteromonas neustonica PAMC 28425T with less than 93.3% ANI and 52.3% isDDH values. Regarding their phenotypic traits, the three strains were Gram-negative, 1–2 µm rod-shaped, aerobic, motile and non-spore-forming bacteria. Cells grew optimally at 25 °C in 2.5% NaCl and at 7–8 pH. The most abundant fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C17:1 ω8c. The strains carried a genome average size of 4.64 Mb and a G+C content of 40.28 mol%. The genetic and phenotypic results suggested that strains hOe-66T, hOe-124 and hOe-125 belong to a new species of the genus Pseudoalteromonas . In this context, we propose the name Pseudoalteromonas ostreae sp. nov. The type strain is hOe-66T (=CECT 30303T=CIP 111911T).

2020 ◽  
Vol 70 (6) ◽  
pp. 3749-3754 ◽  
Author(s):  
Katherine Ansbro ◽  
William G. Wade ◽  
Graham P. Stafford

Three strains representing the previously uncultured human oral Tannerella taxon HMT-286 were recently isolated from the subgingival plaque of a patient with chronic periodontitis. The phenotypic and genetic features of strain SP18_26T were compared to those of the type species of Tannerella , Tannerella forsythia . A genome size of 2.97 Mbp (G+C content 56.5 mol%) was previously reported for SP18_26T, compared to a size of 3.28 Mbp (47.1 mol%) in T. forsythia ATCC 43037T. 16S rRNA gene sequence comparisons also revealed 94.3 % sequence identity with T. forsythia ATCC 43037T. Growth was stimulated by supplementation of media with N-acetyl muramic acid, as seen with T. forsythia , but the cells displayed a distinctive snake-like morphology. Fatty acid methyl ester analysis revealed a profile differing from T. forsythia , chiefly in the amount of 3-OH-16 : 0 (four-fold lower in SP18_26T). Overall, metabolic enzyme activity also differed from T. forsythia , with enzyme activity for indole present, but the complement of glycoside hydrolase enzyme activity was smaller than T. forsythia , for example, lacking sialidase and N-acetyl-β-glucosaminidase – evidence backed up by analysis of its gene content. On the basis of these results, a new species Tannerella serpentiformis is proposed for which the type strain is SP18_26T (=DSM 102894T=JCM 31303T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4646-4652 ◽  
Author(s):  
Nadezhda V. Agafonova ◽  
Elena N. Kaparullina ◽  
Denis S. Grouzdev ◽  
Nina V. Doronina

Novel aerobic, restricted facultatively methylotrophic bacteria were isolated from buds of English oak (Quercus robur L.; strain DubT) and northern red oak (Quercus rubra L.; strain KrD). The isolates were Gram-negative, asporogenous, motile short rods that multiplied by binary fisson. They utilized methanol, methylamine and a few polycarbon compounds as carbon and energy sources. Optimal growth occurred at 25 °C and pH 7.5. The dominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and phoshatidylglycerol. The major cellular fatty acids of cells were C18 : 1 ω7c, 11-methyl C18 : 1 ω7c and C16 : 0. The major ubiquinone was Q-10. Analysis of 16S rRNA gene sequences showed that the strains were closely related to the members of the genus Hansschlegelia : Hansschlegelia zhihuaiae S113T(97.5–98.0 %), Hansschlegelia plantiphila S1T (97.4–97.6 %) and Hansschlegelia beijingensis PG04T(97.0–97.2 %). The 16S rRNA gene sequence similarity between strains DubT and KrD was 99.7 %, and the DNA–DNA hybridization (DDH) result between the strains was 85 %. The ANI and the DDH values between strain DubT and H. zhihuaiae S113T were 80.1 and 21.5  %, respectively. Genome sequencing of the strain DubT revealed a genome size of 3.57 Mbp and a G+C content of 67.0 mol%. Based on the results of the phenotypic, chemotaxonomic and genotypic analyses, it is proposed that the isolates be assigned to the genus Hansschlegelia as Hansschlegelia quercus sp. nov. with the type strain DubT (=VKM B-3284T=CCUG 73648T=JCM 33463T).


Author(s):  
Inhyup Kim ◽  
Geeta Chhetri ◽  
Jiyoun Kim ◽  
Minchung Kang ◽  
Yoonseop So ◽  
...  

Two bacterial strains, designated MJB4T and SJ7T, were isolated from water samples collected from Jeongbang Falls on Jeju Island, Republic of Korea. Phylogenetic analysis of 16S rRNA gene sequences indicated that the two strains belonged to the genera Nocardioides and Hyunsoonleella , owing to their high similarities to Nocardioides jensenii DSM 29641T (97.5 %) and Hyunsoonleella rubra FA042 T (96.3 %), respectively. These values are much lower than the gold standard for bacterial species (98.7 %). The average nucleotide identity values between strains MJB4T, SJ7T and the reference strains, Nocardioides jensenii DSM 29641T, Nocardioides daejeonensis MJ31T and Hyunsoonleella flava T58T were 77.2, 75.9 and 75.4 %, respectively. Strains MJB4T and SJ7T and the type strains of the species involved in system incidence have average nucleotide identity and average amino acid threshold values of 60.1–82.6 % for the species boundary (95–96 %), which confirms that strains MJB4T and SJ7T represent two new species of genus Nocardioides and Hyunsoonleella , respectively. Based on phylogenetic and phenotypic data, strains MJB4T and SJ7T are considered to represent novel species of the genus Nocardioides and Hyunsoonleella , respectively, for which the names Nocardioides donggukensis sp. nov. (type strain MJB4T=KACC 21724T=NBRC 114402T) and Hyunsoonleella aquatilis sp. nov., (type strain SJ7T=KACC 21715T=NBRC 114486T) have been proposed.


Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 625-632 ◽  
Author(s):  
Javier Pascual ◽  
Marina García-López ◽  
Gerald F. Bills ◽  
Olga Genilloud

During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770T was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770T belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis , P. koreensis , P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770T in the genus Pseudomonas . DNA–DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas , for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770T ( = DSM 28040T = LMG 27940T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1752-1755 ◽  
Author(s):  
Ana J. González ◽  
Estefanía Trapiello

A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis . Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T ( = CECT 8144T = LMG 27667T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Annemarie Siebert ◽  
Christopher Huptas ◽  
Mareike Wenning ◽  
Siegfried Scherer ◽  
Etienne V. Doll

Three strains of a Gram-stain-positive, catalase-negative, facultative anaerobic, and coccoid species were isolated from German bulk tank milk. Phylogenetic analyses based on the 16S rRNA gene sequences indicated that the three strains (WS4937T, WS4759 and WS5303) constitute an independent phylogenetic lineage within the family Aerococcaceae with Facklamia hominis CCUG 36813T (93.7–94.1 %) and Eremococcus coleocola M1831/95/2T (93.5 %) as most closely related type species. The unclassified strains demonstrated variable growth with 6.5 % (w/v) NaCl and tolerated pH 6.5–9.5. Growth was observed from 12 to 39 °C. Their cell-wall peptidoglycan belongs to the A1α type (l-Lys-direct) consisting of alanine, glutamic acid and lysine. The predominant fatty acids were C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c and in the polar lipids profile three glycolipids, a phospholipid, phosphatidylglycerol, phosphoglycolipid and diphosphatidylglycerol were found. The G+C content of strain WS4937T was 37.4 mol% with a genome size of ~3.0 Mb. Based on phylogenetic, phylogenomic and biochemical characterizations, the isolates can be demarcated from all other genera of the family Aerococcaceae and, therefore, the novel genus Fundicoccus gen. nov. is proposed. The type species of the novel genus is Fundicoccus ignavus gen. nov., sp. nov. WS4937T (=DSM 109652T=LMG 31441T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5330-5336 ◽  
Author(s):  
Xia Sun ◽  
Fang Wang ◽  
Yang Liu ◽  
Ying Lu

A Gram-stain-negative, aerobic, non-motile and ovoid- to rod-shaped bacterial strain, designated GH877T, was isolated from a water sample of Gahai saline lake in Qaidam Basin,PR China. The isolate grew at 5–45 °C, pH 6.0–9.0 (optima, 37 °C and pH 7.5) and with 0.5–20 % (w/v) NaCl (optimum, 2.0 %). The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain GH877T belonged to the genus Roseovarius , and had highest 16S rRNA gene sequence similarity of 97.7 % to Roseovarius pacificus 81-2T, followed by Roseovarius halotolerans HJ50T (97.5 %) and Roseovarius litoreus GSW-M15T (96.8 %). Genome sequencing revealed a genome size of 3 378 519 bp and a G+C content of 59.8 mol %. Up-to-date bacterial core gene set analysis indicated that strain GH877T represents one independent lineage with R. pacificus DSM29589T. The average nucleotide identity values of GH877T with R. pacificus 81-2T and R. halotolerans HJ50T are 80.7 and 77.3 %, respectively. In silico DNA–DNA hybridization values between strain GH877T and R. pacificus 81-2T and R. halotolerans HJ50T are 23.2 and 20.0 %, respectively. Q-10 was the predominant respiratory quinone and summed feature 8 (C18  :  1 ω7c and/or C18  :  1 ω6c) and C16  :  0 were the major cellular fatty acids. The polar lipids of strain GH877T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified phosphoglycolipids. Based on polyphasic taxonomic analysis, strain GH877T is proposed to represent a novel species of the genus Roseovarius , for which the name Roseovarius gahaiensis sp. nov. is proposed. (type strain GH877T=CGMCC 1.13971T=KCTC 72576T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2388-2394 ◽  
Author(s):  
Marvin A. Altamia ◽  
J. Reuben Shipway ◽  
David Stein ◽  
Meghan A. Betcher ◽  
Jennifer M. Fung ◽  
...  

A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2–5×0.4–0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10–30 °C), 8.0 (pH 6.5–8.5) and 0.5 M NaCl (range, 0.0–0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae . Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T.


Author(s):  
Alvaro S. Villalobos ◽  
Jutta Wiese ◽  
Erik Borchert ◽  
Tanja Rahn ◽  
Beate M. Slaby ◽  
...  

Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora . Major fatty acids were C17 : 1ω8c, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella ) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella , which were re-classified as members of the genus Micromonospora , forming a clade distinct from the genus Salinispora . Pairwise whole genome average nucleotide identity (ANI) values, digital DNA–DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document