scholarly journals High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China

2020 ◽  
Vol 101 (7) ◽  
pp. 701-711
Author(s):  
Nan Yan ◽  
Ran Li ◽  
Yuanwei Wang ◽  
Bin Zhang ◽  
Hua Yue ◽  
...  

Yak is an iconic species of the Qinghai–Tibet Plateau, which is the world's highest plateau. Here, a total of 541 yak diarrhoeic samples were collected from 69 farms in four provinces in the Qinghai–Tibet Plateau from April 2015 to June 2018, and 73.6 % of samples were detected as Bovine Rotavirus A (BRVA) positive by RT-PCR assay. Two G genotypes (G6, G10) and two P genotypes (P[1], P[11]) were determined, in which G6P[1] BRVA was the predominant strain. Moreover, VP7 and VP4 of these G6P[1] strains showed unique amino acid mutations, such that they clustered into an independent branch in the phylogenetic tree. A strain of BRVA designated as RVA/Yak-tc/CHN/QH-1/2015/G6P[1] was isolated successfully using MA104 cells, and the virus titre was determined as 105.84 TCID50 ml–1. The genome of strain QH-1 had a G6-P[1]-I2-R2-C2-M2-A3-N3-T6-E2-H3 genotype constellation. QH-1 was identified as a reassortment strain of BRVA, human RVA and ovine RVA based on the nucleotide identity and phylogenetic tree of 11 gene segments, indicating its public health significance. To the best of our knowledge, this is the first report on the molecular prevalence and genome characteristics of BRVA in yak, contributing to further understanding of the epidemic and genetic evolution of BRVA.

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Qing-Xun Zhang ◽  
Ye Wang ◽  
Ying Li ◽  
Shu-Yi Han ◽  
Bo Wang ◽  
...  

Melophagus ovinus (sheep ked) is a hematophagous ectoparasite that mainly parasitizes sheep. In addition to causing inflammation, wool loss, and skin damage to the animal hosts, M. ovinus also serves as a vector for a variety of pathogens and is highly likely to participate in the life and transmission cycle of pathogenic organisms. Herein, we investigated the presence and molecular characterization of vector-borne pathogens in M. ovinus from Qinghai-Tibet Plateau, China. A total of 92 M. ovinus pools collected from the Qinghai province of China were screened for the presence of selected vector-borne pathogens. The overall positive rate of A. ovis, A. bovis, A. phagocytophilum, and T. ovis in M. ovinus was 39.1%, 17.4%, 9.8%, and 89.1%, respectively. All of the samples were negative for Border disease virus (BDV), other Anaplasma species, Babesia spp., Rickettsia spp., and Borrelia spp. Co-infection of different Anaplasma species and T. ovis occurred in 51.2% of all samples with T. ovis. The positive rates of A. ovis, A. bovis, and A. phagocytophilum in different regions and altitudes of the sampling sites were significantly different. Sequence and phylogenetic analysis of target genes confirmed their identity with corresponding pathogens. Our results elucidate the occurrence and molecular characterization of Anaplasma spp. and Theileria spp. in M. ovinus, which could act as potential zoonotic reservoirs. To the best of our knowledge, this is the first report of the detection of A. bovis and A. phagocytophilum DNA in M. ovinus. This study gives the first extensive molecular survey of vector-borne pathogens with veterinary and public health significance in M. ovinus from the Qinghai-Tibet Plateau, China.


2021 ◽  
pp. 104063872110296
Author(s):  
Guoqing Shao ◽  
Long Zhao ◽  
Cheng Tang ◽  
Hua Yue

Bovine parvovirus 1 (BPV1) is a causative agent of respiratory, gastrointestinal, and reproductive cattle diseases. We collected 149 yak diarrhea fecal samples from 9 farms in the Qinghai-Tibet Plateau. The samples were screened for BPV1 by PCR, and 2 samples were positive for BPV1. The complete genomes of these BPV1 isolates were sequenced successfully. The sequences of these 2 variants were both 5,515 bp in length and shared 96.5–96.8% identity with 2 previously reported BPV1 genomes (GenBank DQ335247, NC_001540). Twenty-six identical amino acid mutations were found in the 2 yak variants, including 7 amino acid substitutions in receptor-binding regions of the VP2 protein, and 5 amino acid substitutions in the NS1 protein C-terminal region that functions to activate transcription. The new genome sequences contribute to better understanding of the evolution and molecular characteristics of BPV1.


2020 ◽  
Author(s):  
Qingxun Zhang ◽  
Ye Wang ◽  
Ying Li ◽  
Shuyi Han ◽  
Bo Wang ◽  
...  

Abstract BackgroundMelophagus ovinus (sheep ked) is a hematophagous ectoparasite that mainly parasitizes sheep. In addition to causing inflammation, wool loss and skin damage to the animal hosts, M. ovinus also serves as a vector for a variety of pathogens and is highly likely to participate in the life and transmission cycle of pathogenic organisms. MethodsHerein, we investigated the presence and molecular characterization of vector-borne pathogens in M. ovinus from Qinghai-Tibet Plateau, China. ResultsA total of 92 M. ovinus pools (n=276) collected from Qinghai province of China were screened for the presence of selected vector-borne pathogens. The overall prevalence of A. ovis, A. bovis, A. phagocytophilum, and T. ovis in M. ovinus was 39.1%, 17.4%, 9.8%, and 89.1%, respectively. All of the samples were negative for BDV, other Anaplasma species, Babesia spp., Rickettsia spp., and Borrelia spp. Co-infection of different Anaplasma species and T. ovis occurred in 51.2% of all samples with T. ovis. The positive rates of A. ovis, A. bovis, and A. phagocytophilum in different region and altitude of the sampling sites were significantly different. Sequence and phylogenetic analysis of target genes confirmed their identity with corresponding pathogens. ConclusionOur results elucidate the occurrence and genetic diversity of Anaplasma spp. and Theileria spp. in M. ovinus, which could act as potential zoonotic reservoirs. To the best of our knowledge, this is the first report of the detection of A. bovis and A. phagocytophilum DNA in M. ovinus. This study gives the first extensive molecular survey of vector-borne pathogens with veterinary and public health significance in M. ovinus from the Qinghai-Tibet Plateau, China.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ye Wang ◽  
Qingxun Zhang ◽  
Shuyi Han ◽  
Ying Li ◽  
Bo Wang ◽  
...  

Tick-borne diseases (TBDs) can cause serious economic losses and are very important to animal and public health. To date, research on TBDs has been limited in Qinghai-Tibet Plateau, China. This epidemiological investigation was conducted to evaluate the distribution and risk factors of Anaplasma spp. and Ehrlichia chaffeensis in livestock in Qinghai. A total of 566 blood samples, including 330 yaks (Bos grunniens) and 236 Tibetan sheep (Ovis aries) were screened. Results showed that A. bovis (33.3%, 110/330) and A. phagocytophilum (29.4%, 97/330) were most prevalent in yaks, followed by A. ovis (1.2%, 4/330), A. capra (0.6%, 2/330), and E. chaffeensis (0.6%, 2/330). While A. ovis (80.9%, 191/236) and A. bovis (5.1%, 12/236) infection was identified in Tibetan sheep. To our knowledge, it is the first time that A. capra and E. chaffeensis have been detected in yaks in China. Apart from that, we also found that co-infection of A. bovis and A. phagocytophilum is common in yaks (28.2%, 93/330). For triple co-infection, two yaks were infected with A. bovis, A. phagocytophilum, and A. capra, and two yaks were infected with A. bovis, A. phagocytophilum, and E. chaffeensis. Risk analysis shows that infection with A. bovis, A. phagocytophilum, and A. ovis was related to region and altitude. This study provides new data on the prevalence of Anaplasma spp. and E. chaffeensis in Qinghai, China, which may help to develop new strategies for active responding to these pathogens.


2013 ◽  
Vol 94 (6) ◽  
pp. 1273-1295 ◽  
Author(s):  
Toyoko Nakagomi ◽  
Yen Hai Doan ◽  
Winifred Dove ◽  
Bagrey Ngwira ◽  
Miren Iturriza-Gómara ◽  
...  

Rotavirus A, the most common cause of severe diarrhoea in children worldwide, occurs in five major VP7 (G) and VP4 (P) genotype combinations, comprising G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. However, G8, a common bovine rotavirus genotype, has been reported frequently among children in African countries. Surveillance of rotavirus gastroenteritis conducted in a sentinel hospital in Blantyre, Malawi between 1997 and 2007 provided a rare opportunity to examine the whole genotype constellation of G8 strains and their evolution over time. A sample of 27 (9.0 %) of 299 G8 strains was selected to represent each surveillance year and a range of P genotypes, which shifted in predominance from P[6] to P[4] and P[8] during the study period. Following cell culture adaptation, whole genome sequencing demonstrated that the genetic background of 26 strains possessed the DS-1 genotype constellation. A single G8P[6] strain was a reassortant in which both NSP2 and NSP5 genes from strains with the Wa genotype constellation had been inserted into a strain with the DS-1 genotype background. Phylogenetic analysis suggested frequent reassortment among co-circulating strains with the DS-1 genotype constellation. Little evidence was identified to suggest the introduction of contemporary bovine rotavirus genes into any of the 27 G8 strains examined. In conclusion, Malawian G8 strains are closely related to other human strains with the DS-1 genotype constellation. They have evolved over the last decade through genetic reassortment with other human rotaviruses, changing their VP4 genotypes while maintaining a conserved genotype constellation for the remaining structural and non-structural proteins.


2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document