scholarly journals The host range restriction of bat-associated no-known-vector flaviviruses occurs post-entry

2021 ◽  
Vol 102 (9) ◽  
Author(s):  
Jermilia Charles ◽  
Chandra S. Tangudu ◽  
Daniel Nunez-Avellaneda ◽  
Aaron C. Brault ◽  
Bradley J. Blitvich

Most flaviviruses are transmitted horizontally between vertebrate hosts by haematophagous arthropods. Others exhibit host ranges restricted to vertebrates or arthropods. Vertebrate-specific flaviviruses are commonly referred to as no-known-vector (NKV) flaviviruses and can be separated into bat- and rodent-associated NKV flaviviruses. Rio Bravo virus (RBV) is one of eight recognized bat-associated NKV (B-NKV) flaviviruses. Studies designed to identify the genetic determinants that condition the host range restriction of B-NKV flaviviruses have never been performed. To investigate whether the host range restriction occurs at the level of attachment or entry, chimeric flaviviruses were created by inserting the pre-membrane and envelope protein genes of RBV into the genetic backbones of yellow fever virus (YFV) and Zika virus (ZIKV), two mosquito-borne flaviviruses associated with human disease. The chimeric viruses infected both vertebrate and mosquito cells. In vertebrate cells, all viruses produced similar mean peak titres, but the chimeric viruses grew more slowly than their parental viruses during early infection. In mosquito cells, the chimeric virus of YFV and RBV grew more slowly than YFV at early post-inoculation time points, but reached a similar mean peak titre. In contrast, the chimeric virus of ZIKV and RBV produced a mean peak titre that was approximately 10-fold lower than ZIKV. The chimeric virus of YFV and RBV produced an intermediate plaque phenotype, while the chimeric virus of ZIKV and RBV produced smaller plaques than both parental viruses. To conclude, we provide evidence that the structural glycoproteins of RBV permit entry into both mosquito and vertebrate cells, indicating that the host range restriction of B-NKV flaviviruses is mediated by a post-attachment/entry event.

1998 ◽  
Vol 72 (3) ◽  
pp. 2341-2351 ◽  
Author(s):  
Max Ciarlet ◽  
Mary K. Estes ◽  
Christopher Barone ◽  
Robert F. Ramig ◽  
Margaret E. Conner

ABSTRACT The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV × D (G1), RRV × DS-1 (G2), and RRV × ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 103 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction. Also, our results suggest that VP4 may be involved in, but is not exclusively responsible for, host range restriction in the rabbit model. The replication efficiency of rotavirus in rabbits also is not controlled by the product of gene 5 (NSP1) alone, since a reassortant rotavirus with ALA gene 5 and all other genes from SA11 was more severely replication restricted than either parental rotavirus strain.


2015 ◽  
Vol 89 (17) ◽  
pp. 9133-9136 ◽  
Author(s):  
Janine Mühe ◽  
Fred Wang

Epstein-Barr-related herpesviruses, or lymphocryptoviruses (LCV), naturally infect humans and nonhuman primates (NHP), but their host range is not well characterized. Using LCV and B cells from multiple species of Hominidae and Cercopithecidae, we show that LCV can immortalize B cells from some nonnative species but that growth transformation is restricted to B cells from their own family of hominoids or Old World NHP, suggesting a high degree of LCV adaptation to their natural primate host.


2003 ◽  
Vol 77 (2) ◽  
pp. 1141-1148 ◽  
Author(s):  
Mario H. Skiadopoulos ◽  
Alexander C. Schmidt ◽  
Jeffrey M. Riggs ◽  
Sonja R. Surman ◽  
William R. Elkins ◽  
...  

ABSTRACT The Kansas strain of bovine parainfluenza virus type 3 (BPIV3) is 100- to 1,000-fold restricted in replication in the respiratory tracts of nonhuman primates compared to human PIV3 (HPIV3), an important pathogen of infants and young children. BPIV3 is also restricted in replication in human infants and children, yet it is immunogenic and is currently being evaluated in clinical trials as a vaccine candidate to protect against illness caused by HPIV3. We have examined the genetic basis for the host range attenuation phenotype of BPIV3 by exchanging each open reading frame (ORF) of a recombinant wild-type HPIV3 with the analogous ORF from BPIV3, with the caveats that the multiple ORFs of the P gene were exchanged as a single unit and that the HN and F genes were exchanged as a single unit. Recombinant chimeric bovine-human PIV3s were recovered from cDNA, and the levels of viral replication in vitro and in the respiratory tract of rhesus monkeys were determined. Recombinant chimeric HPIV3s bearing the BPIV3 N or P ORF were highly attenuated in the upper and lower respiratory tracts of monkeys, whereas those bearing the BPIV3 M or L ORF or the F and HN genes were only moderately attenuated. This indicates that the genetic determinants of the host range restriction of replication of BPIV3 for primates are polygenic, with the major determinants being the N and P ORFs. Monkeys immunized with these bovine-human chimeric viruses, including the more highly attenuated ones, developed higher levels of HPIV3 hemagglutination-inhibiting serum antibodies than did monkeys immunized with BPIV3 and were protected from challenge with wild-type HPIV3. Furthermore, host range determinants could be combined with attenuating point mutations to achieve an increased level of attenuation. Thus, chimeric recombinant bovine-human PIV3 viruses that manifest different levels of attenuation in rhesus monkeys are available for evaluation as vaccine candidates to protect infants from the severe lower respiratory tract disease caused by HPIV3.


2003 ◽  
Vol 77 (17) ◽  
pp. 9522-9532 ◽  
Author(s):  
Man-Seong Park ◽  
Adolfo García-Sastre ◽  
Jerome F. Cros ◽  
Christopher F. Basler ◽  
Peter Palese

ABSTRACT It has been demonstrated that the V protein of Newcastle disease virus (NDV) functions as an alpha/beta interferon (IFN-α/β) antagonist (M. S. Park, M. L. Shaw, J. Muñoz-Jordan, J. F. Cros, T. Nakaya, N. Bouvier, P. Palese, A. García-Sastre, and C. F. Basler, J. Virol. 77:1501-1511, 2003). We now show that the NDV V protein plays an important role in host range restriction. In order to study V functions in vivo, recombinant NDV (rNDV) mutants, defective in the expression of the V protein, were generated. These rNDV mutants grow poorly in both embryonated chicken eggs and chicken embryo fibroblasts (CEFs) compared to the wild-type (wt) rNDV. However, insertion of the NS1 gene of influenza virus A/PR8/34 into the NDV V(−) genome [rNDV V(−)/NS1] restores impaired growth to wt levels in embryonated chicken eggs and CEFs. These data indicate that for viruses infecting avian cells, the NDV V protein and the influenza NS1 protein are functionally interchangeable, even though there are no sequence similarities between the two proteins. Interestingly, in human cells, the titer of wt rNDV is 10 times lower than that of rNDV V(−)/NS1. Correspondingly, the level of IFN secreted by human cells infected with wt rNDV is much higher than that secreted by cells infected with the NS1-expressing rNDV. This suggests that the IFN antagonist activity of the NDV V protein is species specific. Finally, the NDV V protein plays an important role in preventing apoptosis in a species-specific manner. The rNDV defective in V induces apoptotic cell death more rapidly in CEFs than does wt rNDV. Taken together, these data suggest that the host range of NDV is limited by the ability of its V protein to efficiently prevent innate host defenses, such as the IFN response and apoptosis.


Virology ◽  
1998 ◽  
Vol 251 (2) ◽  
pp. 334-342 ◽  
Author(s):  
Linda S. Wyatt ◽  
Miles W. Carroll ◽  
Claus-Peter Czerny ◽  
Michael Merchlinsky ◽  
Jerry R. Sisler ◽  
...  

2000 ◽  
Vol 74 (3) ◽  
pp. 1187-1199 ◽  
Author(s):  
Ursula J. Buchholz ◽  
Harald Granzow ◽  
Kathrin Schuldt ◽  
Stephen S. Whitehead ◽  
Brian R. Murphy ◽  
...  

ABSTRACT We recently developed a system for the generation of infectious bovine respiratory syncytial virus (BRSV) from cDNA. Here, we report the recovery of fully viable chimeric recombinant BRSVs (rBRSVs) that carry human respiratory syncytial virus (HRSV) glycoproteins in place of their BRSV counterparts, thus combining the replication machinery of BRSV with the major antigenic determinants of HRSV. A cDNA encoding the BRSV antigenome was modified so that the complete G and F genes, including the gene start and gene end signals, were replaced by their HRSV A2 counterparts. Alternatively, the BRSV F gene alone was replaced by that of HRSV Long. Each antigenomic cDNA directed the successful recovery of recombinant virus, yielding rBRSV/A2 and rBRSV/LongF, respectively. The HRSV G and F proteins or the HRSV F in combination with BRSV G were expressed efficiently in cells infected with the appropriate chimeric virus and were efficiently incorporated into recombinant virions. Whereas BRSV and HRSV grew more efficiently in bovine and human cells, respectively, the chimeric rBRSV/A2 exhibited intermediate growth characteristics in a human cell line and grew better than either parent in a bovine line. The cytopathology induced by the chimera more closely resembled that of BRSV. BRSV was confirmed to be highly restricted for replication in the respiratory tract of chimpanzees, a host that is highly permissive for HRSV. Interestingly, the rBRSV/A2 chimeric virus was somewhat more competent than BRSV for replication in chimpanzees but remained highly restricted compared to HRSV. This showed that the substitution of the G and F glycoproteins alone was not sufficient to induce efficient replication in chimpanzees. Thus, the F and G proteins contribute to the host range restriction of BRSV but are not the major determinants of this phenotype. Although rBRSV/A2 expresses the major neutralization and protective antigens of HRSV, chimpanzees infected with this chimeric virus were not significantly protected against subsequent challenge with wild-type HRSV. This suggests that the growth restriction of rBRSV/A2 was too great to provide adequate antigen expression and that the capacity of this chimeric vaccine candidate for replication in primates will need to be increased by the importation of additional HRSV genes.


Sign in / Sign up

Export Citation Format

Share Document