Isolation and detection of Shiga toxin-producing Escherichia coli in clinical stool samples using conventional and molecular methods

2009 ◽  
Vol 58 (7) ◽  
pp. 905-911 ◽  
Author(s):  
Matthew W. Gilmour ◽  
Linda Chui ◽  
Theodore Chiu ◽  
Dobryan M. Tracz ◽  
Kathryn Hagedorn ◽  
...  

The isolation of Shiga toxin-producing Escherichia coli (STEC) other than serogroup O157 from clinical stool samples is problematic due to the lack of differential phenotypic characteristics from non-pathogenic E. coli. The development of molecular reagents capable of identifying both toxin and serogroup-specific genetic determinants holds promise for a more comprehensive characterization of stool samples and isolation of STEC strains. In this study, 876 stool samples from paediatric patients with gastroenteritis were screened for STEC using a cytotoxicity assay, commercial immunoassay and a conventional PCR targeting Shiga-toxin determinants. In addition, routine culture methods for isolating O157 STEC were also performed. The screening assays identified 45 stools presumptively containing STEC, and using non-differential culture techniques a total of 20 O157 and 22 non-O157 strains were isolated. These included STEC serotypes O157 : H7, O26 : H11, O121 : H19, O26 : NM, O103 : H2, O111 : NM, O115 : H18, O121 : NM, O145 : NM, O177 : NM and O5 : NM. Notably, multiple STEC serotypes were isolated from two clinical stool samples (yielding O157 : H7 and O26 : H11, or O157 : H7 and O103 : H2 isolates). These data were compared to molecular serogroup profiles determined directly from the stool enrichment cultures using a LUX real-time PCR assay targeting the O157 fimbrial gene lpfA, a microsphere suspension array targeting allelic variants of espZ and a gnd-based molecular O-antigen serogrouping method. The genetic profile of individual stool cultures indicated that the espZ microsphere array and lpfA real-time PCR assay could accurately predict the presence and provide preliminary typing for the STEC strains present in clinical samples. The gnd-based molecular serogrouping method provided additional corroborative evidence of serogroup identities. This toolbox of molecular methods provided robust detection capabilities for STEC in clinical stool samples, including co-infection of multiple serogroups.

2020 ◽  
Vol 8 (11) ◽  
pp. 1801
Author(s):  
Michael Bording-Jorgensen ◽  
Brendon D. Parsons ◽  
Gillian A.M. Tarr ◽  
Binal Shah-Gandhi ◽  
Colin Lloyd ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) are associated with acute gastroenteritis worldwide, which induces a high economic burden on both healthcare and individuals. Culture-independent diagnostic tests (CIDT) in frontline microbiology laboratories have been implemented in Alberta since 2019. The objectives of this study were to determine the association between gene detection and culture positivity over time using STEC microbiological clearance samples and also to establish the frequency of specimen submission. Both stx genes’ amplification by real-time PCR was performed with DNA extracted from stool samples using the easyMAG system. Stools were inoculated onto chromogenic agar for culture. An association between gene detection and culture positivity was found to be independent of which stx gene was present. CIDT can provide rapid reporting with less hands-on time and technical expertise. However, culture is still important for surveillance and early cluster detection. In addition, stool submissions could be reduced from daily to every 3–5 days until a sample is negative by culture.


2015 ◽  
Vol 53 (7) ◽  
pp. 2148-2153 ◽  
Author(s):  
Xuan Qin ◽  
Eileen J. Klein ◽  
Emmanouil Galanakis ◽  
Anita A. Thomas ◽  
Jennifer R. Stapp ◽  
...  

Timely accurate diagnosis of Shiga toxin-producingEscherichia coli(STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targetingstx1,stx2, andrfbEO157with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagicE. coli[EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC.E. coliO157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 usingrfbEO157, and LD-PCR results prompted successful recovery ofE. coliO157 (n= 25) and non-O157 STEC (n= 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and thatE. coliO157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections.


2018 ◽  
Vol 81 (3) ◽  
pp. 490-496 ◽  
Author(s):  
Yangjin Jung ◽  
Christopher L. Rupert ◽  
Benjamin Chapman ◽  
Anna C. S. Porto Fett ◽  
John B. Luchansky

ABSTRACT In total, 115 marinade samples (58 fresh marinades and 57 spent marinades) were collected over 12 months from specialty retailers (four individual stores) near Raleigh, NC. These marinades were screened for total mesophilic aerobic plate count (M-APC), total psychrotrophic aerobic plate count (P-APC), and Enterobacteriaceae. These marinades were also screened for the seven regulated serogroups of Shiga toxin–producing Escherichia coli. Stores A and B used immersion to marinade raw beef cuts, whereas stores C-1 and C-2 used vacuum tumbling. In general, marinade temperatures at the stores ranged from 1.8 to 6.6°C, and beef cuts were marinated from a few minutes to up to 3 days. Regardless of the process used to marinade meat, levels of M-APC and P-APC in fresh marinades ranged from 3.4 to 4.7 and 1.4 to 1.8 log CFU/mL, respectively, whereas Enterobacteriaceae were not detected in any fresh marinades, even after enrichment. However, levels of M-APC, P-APC, and Enterobacteriaceae in spent marinades collected from stores C-1 and C-2 (ca. 3.6 to 7.1 log CFU/mL) were significantly higher (P < 0.05) compared with levels of these same types of bacteria enumerated from spent marinades collected at stores A and B (ca. ≤0.7 to 4.9 log CFU/mL). None of the 115 marinade samples tested positive for Shiga toxin–producing E. coli by using a BAX system real-time PCR assay. No significant (P > 0.05) association was observed between microbial levels (i.e., M-APC, P-APC, and Enterobacteriaceae) and the temperature or duration of the marination process. Levels of M-APC, P-APC, and Enterobacteriaceae in spent marinades were significantly affected by the marination method (P < 0.05), with levels, in general, being higher in marinades used for tumbling. Thus, retailers must continue to keep marinade solutions and meat at a safe temperature (i.e., ≤4°C) and to properly and frequently sanitize the equipment and environment in both the processing area and deli case.


2012 ◽  
Vol 75 (11) ◽  
pp. 1939-1950 ◽  
Author(s):  
JAMIE L. WASILENKO ◽  
PINA M. FRATAMICO ◽  
NEELAM NARANG ◽  
GLENN E. TILLMAN ◽  
SCOTT LADELY ◽  
...  

Non-O157 Shiga toxin–producing Escherichia coli (STEC) infections, particularly those caused by the “big six” or “top six” non-O157 serogroups (O26, O45, O103, O111, O121, and O145) can result in severe illness and complications. Because of their significant public health impact and the notable prevalence of STEC in cattle, methods for detection of the big six non-O157 STEC in ground beef have been established. Currently, the U.S. Department of Agriculture, Food Safety and Inspection Service detection methods for screening beef samples for non-O157 STEC target the stx1, stx2, and eae virulence genes, with the 16S rRNA gene as an internal control, in a real-time PCR multiplex assay. Further, the serogroup is determined by PCR targeting genes in the E. coli O-antigen gene clusters of the big six non-O157 serogroups. The method that we previously reported was improved so that additional stx variants, stx1d, stx2e, and stx2g, are detected. Additionally, alignments of the primers targeting the eae gene were used to improve the detection assay so that eae subtypes that could potentially be of clinical significance would also be detected. Therefore, evaluation of alternative real-time PCR assay primers and probes for the stx and eae reactions was carried out in order to increase the stx and eae subtypes detected. Furthermore, a Tris-EDTA DNA extraction method was compared with a previously used procedure that was based on a commercially available reagent. The Tris-EDTA DNA extraction method significantly decreased the cycle threshold values for the stx assay (P < 0.0001) and eae assay (P < 0.0001), thereby increasing the ability to detect the targets. The use of different stx primers and probes increased the subtypes detected to include stx1d, stx2e, and stx2g, and sequence data showed that modification of the eae primer should allow the known eae subtypes to be detected.


2017 ◽  
Author(s):  
◽  
Yuejiao Liu

Foodborne illnesses associated with Salmonella and Escherichia coli O157:H7 have become world-wide public-health problems. Conventional methods for the identification of foodborne pathogens are tedious, expensive, and time-consuming. Alternatively, real-time PCR (RT-PCR) as a promising method to detect pathogens in food samples, has recently been widely applied in food safety areas. High Resolution Meltcurve (HRM) analysis, performed immediately at the end of a real-time PCR, is able to yield a higher resolution plot compared with SYBR Green I PCR. HRM dyes completely saturate all amplicons without showing preferential bindings, making the results more clear and distinct. In this research, a multiplex real-time PCR targeting the invA, fimA and stn genes were developed to efficiently detect Salmonella in foods. Furthermore, HRM analysis is sensitive to any single mutation in PCR products, thus it was also applied in this study to distinguish E. coli O157 from other serogroups of E. coli by targeting the uidA gene. The specificity of primers used in this study was checked using many different strains. Results of artificially contaminated foods presented a high sensitivity of the HRM detection methods. Due to its low cost, simplicity of the approach and rapidness, HRM technology is highly competitive with relaxed-condition PCR and probe-based PCR. Besides, an HRM assay can be performed on generic real-time PCR instrumentations found in many laboratories. In conclusion, HRM-based PCR assay are proved to be efficient methods in foodborne pathogen detections.


Author(s):  
John B. Kalule ◽  
Karen H. Keddy ◽  
Anthony Smith ◽  
Mark P. Nicol ◽  
Lourens Robberts

Introduction: Shiga toxin-producing Escherichia coli (STEC) is an emerging infectious pathogen which could lead to haemolytic uremic syndrome. Even though previous studies have compared the performance of CHROMagarTMSTEC to real-time polymerase chain reaction (PCR) in Europe, no study has been done to assess its performance on African isolates.Objectives: This project aimed to validate and test an in-house-developed duplex real-time PCR and use it as a reference standard to determine the performance of CHROMagarTMSTEC on African isolates from diarrhoeic stool samples.Methods: This study evaluated STEC diagnostic technology on African isolates. An in-house-developed duplex real-time PCR assay for detection of stx1 and stx2 was validated and tested on diarrhoeic stool samples and then used as a reference standard to assess the performance of CHROMagarTMSTEC. Real-time PCR was used to screen for stx in tryptic soy broth and the suspected STEC isolates, while conventional PCR was used to detect the other virulence genes possessed by the isolates.Results: The real-time PCR limit of detection was 5.3 target copies/μL of broth. The mean melting temperature on melt-curve analysis for detection of stx1 was 58.2 °C and for stx2 was 65.3 °C. Of 226 specimens screened, real-time PCR detected stx in 14 specimens (6.2%, 95% confidence interval = 3.43% – 10.18%). The sensitivity, specificity, negative predictive value and positive predictive value of the CHROMagarTMSTEC were 33.3%, 77.4%, 95.3% and 11.3%.Conclusions: The in-house developed real-time PCR assay is a sensitive and specific option for laboratory detection of STEC as compared to CHROMagarTMSTEC in this setting.


2015 ◽  
Vol 78 (8) ◽  
pp. 1560-1568 ◽  
Author(s):  
YOSHITAKA TERAO ◽  
KANA TAKESHITA ◽  
YASUTAKA NISHIYAMA ◽  
NAOKI MORISHITA ◽  
TAKASHI MATSUMOTO ◽  
...  

Shiga toxin (Stx)–producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non–E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non–E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.


Sign in / Sign up

Export Citation Format

Share Document