scholarly journals Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients

2010 ◽  
Vol 59 (9) ◽  
pp. 1114-1122 ◽  
Author(s):  
Ateequr Rehman ◽  
Patricia Lepage ◽  
Andreas Nolte ◽  
Stephan Hellmig ◽  
Stefan Schreiber ◽  
...  

Dysbiosis of the gut mucosa-associated microbiota (MAM) plays a pivotal role in the pathogenesis of chronic inflammatory bowel diseases (IBD). To date, dysbiosis only describes the altered composition of the different bacterial populations, but little is known about transcriptional activity, metabolism and the ‘live’ status of the MAM. In this study we investigated the transcriptional activity of the dominant intestinal bacterial populations in patients with IBD. Colonic mucosal biopsies from patients with active Crohn's disease (CD; n=10), active ulcerative colitis (UC; n=10) and healthy individuals (HI; n=10) were compared by 16S rRNA gene and rRNA profiles using clone libraries with more than 1700 sequenced clones. Bacterial richness was significantly lower in clone libraries based on rRNA compared to those based on the rRNA genes in the CD group (3.01 vs 3.91) and the UC group (3.61 vs 4.15), but showed no difference in HI (3.81 vs 3.85). The qualitative composition of rRNA and rRNA gene clone libraries was significantly different, with the phylum Bacteroidetes being the most active (P<0.01) compared to other populations in all clinical groups. In contrast, Actinobacteria and Firmicutes were inactive in the CD group, while Escherichia sp. were both abundant and active in the CD and UC groups. Most of the phylotypes showing the highest activity index ratios represented less than 1 % of the microbiota. Our findings indicate that specific bacterial populations are activated in IBD patients, while other groups are in an inactive or ‘dormant’ state. The transcriptional activity points to a more functional role of the intestinal mucosal microbiota and may lead to the identification of therapeutic targets in the active modulation of microbial factors.

2008 ◽  
Vol 57 (12) ◽  
pp. 1569-1576 ◽  
Author(s):  
Tanja Kuehbacher ◽  
Ateequr Rehman ◽  
Patricia Lepage ◽  
Stephan Hellmig ◽  
Ulrich R. Fölsch ◽  
...  

TM7 is a recently described subgroup of Gram-positive uncultivable bacteria originally found in natural environmental habitats. An association of the TM7 bacterial division with the inflammatory pathogenesis of periodontitis has been previously shown. This study investigated TM7 phylogenies in patients with inflammatory bowel diseases (IBDs). The mucosal microbiota of patients with active Crohn's disease (CD; n=42) and ulcerative colitis (UC; n=31) was compared with that of controls (n=33). TM7 consortia were examined using molecular techniques based on 16S rRNA genes, including clone libraries, sequencing and in situ hybridization. TM7 molecular signatures could be cloned from mucosal samples of both IBD patients and controls, but the composition of the clone libraries differed significantly. Taxonomic analysis of the sequences revealed a higher diversity of TM7 phylotypes in CD (23 different phylotypes) than in UC (10) and non-IBD controls (12). All clone libraries showed a high number of novel sequences (21 for controls, 34 for CD and 29 for UC). A highly atypical base substitution for bacterial 16S rRNA genes associated with antibiotic resistance was detected in almost all sequences from CD (97.3 %) and UC (100 %) patients compared to only 65.1 % in the controls. TM7 bacteria might play an important role in IBD similar to that previously described in oral inflammation. The alterations of TM7 bacteria and the genetically determined antibiotic resistance of TM7 species in IBD could be a relevant part of a more general alteration of bacterial microbiota in IBD as recently found, e.g. as a promoter of inflammation at early stages of disease.


2017 ◽  
Author(s):  
Kaitlin J. Flynn ◽  
Mack T. Ruffin ◽  
D. Kim Turgeon ◽  
Patrick D. Schloss

AbstractThe microbiome has been implicated in the development of colorectal cancer (CRC) and inflammatory bowel diseases (IBD). The specific traits of these diseases vary along the axis of the digestive tract. Further, variation in the structure of the gut microbiota has been associated with both diseases. Here we profiled the microbiota of the healthy proximal and distal mucosa and lumen to better understand how bacterial populations vary along the colon. We used a two-colonoscope approach to sample proximal and distal mucosal and luminal contents from the colons of 20 healthy subjects that had not undergone any bowel preparation procedure. The biopsies and home-collected stool were subjected to 16S rRNA gene sequencing and Random Forest classification models were built using taxa abundance and location to identify microbiota specific to each site. The right mucosa and lumen had the most similar community structures of the five sites we considered from each subject. The distal mucosa had higher relative abundance of Finegoldia, Murdochiella, Peptoniphilus, Porphyromonas and Anaerococcus. The proximal mucosa had more of the genera Enterobacteriaceae, Bacteroides and Pseudomonas. The classification model performed well when classifying mucosal samples into proximal or distal sides (AUC = 0.808). Separating proximal and distal luminal samples proved more challenging (AUC = 0.599) and specific microbiota that differentiated the two were hard to identify. By sampling the unprepped colon, we identified distinct bacterial populations native to the proximal and distal sides. Further investigation of these bacteria may elucidate if and how these groups contribute to different disease processes on their respective sides of the colon.


Sign in / Sign up

Export Citation Format

Share Document