scholarly journals Spatial variation of the native colon microbiota in healthy adults

2017 ◽  
Author(s):  
Kaitlin J. Flynn ◽  
Mack T. Ruffin ◽  
D. Kim Turgeon ◽  
Patrick D. Schloss

AbstractThe microbiome has been implicated in the development of colorectal cancer (CRC) and inflammatory bowel diseases (IBD). The specific traits of these diseases vary along the axis of the digestive tract. Further, variation in the structure of the gut microbiota has been associated with both diseases. Here we profiled the microbiota of the healthy proximal and distal mucosa and lumen to better understand how bacterial populations vary along the colon. We used a two-colonoscope approach to sample proximal and distal mucosal and luminal contents from the colons of 20 healthy subjects that had not undergone any bowel preparation procedure. The biopsies and home-collected stool were subjected to 16S rRNA gene sequencing and Random Forest classification models were built using taxa abundance and location to identify microbiota specific to each site. The right mucosa and lumen had the most similar community structures of the five sites we considered from each subject. The distal mucosa had higher relative abundance of Finegoldia, Murdochiella, Peptoniphilus, Porphyromonas and Anaerococcus. The proximal mucosa had more of the genera Enterobacteriaceae, Bacteroides and Pseudomonas. The classification model performed well when classifying mucosal samples into proximal or distal sides (AUC = 0.808). Separating proximal and distal luminal samples proved more challenging (AUC = 0.599) and specific microbiota that differentiated the two were hard to identify. By sampling the unprepped colon, we identified distinct bacterial populations native to the proximal and distal sides. Further investigation of these bacteria may elucidate if and how these groups contribute to different disease processes on their respective sides of the colon.

2020 ◽  
Author(s):  
Maureen A. Carey ◽  
Gregory L. Medlock ◽  
Masud Alam ◽  
Mamun Kabir ◽  
Md Jashim Uddin ◽  
...  

ABSTRACTBackgroundThe protozoan parasites in the Cryptosporidium genus cause both acute diarrheal disease and subclinical (i.e. non-diarrheal) disease. It is unclear if the microbiota can influence the manifestation of diarrhea during a Cryptosporidium infection.MethodsTo characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal samples was evaluated using 16S rRNA gene sequencing. Additionally, the microbiome composition prior to infection was examined to test whether a preexisting microbiome profile could influence the Cryptosporidium infection phenotype.ResultsFecal microbiome composition was associated with diarrheal symptoms at two timepoints. Megasphaera was significantly less abundant in diarrheal samples when compared to subclinical samples at the time of Cryptosporidium detection (log2(fold change) = -4.3, p=10−10) and prior to infection (log2(fold change) = -2.0, p=10−4). Random forest classification also identified Megasphaera abundance in the pre- and post-exposure microbiota.as predictive of a subclinical infection.ConclusionsMicrobiome composition broadly, and specifically low Megasphaera abundance, was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection. This observation suggests that the gut microenvironment may play a role in determining the severity of a Cryptosporidium infection.SummaryMegasphaera abundance in the stool of Bangladeshi infants is associated with the development of diarrhea upon infection with the Cryptosporidium parasite.


RMD Open ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e001755
Author(s):  
Maria Chiara Ditto ◽  
Simone Parisi ◽  
Gianpiero Landolfi ◽  
Richard Borrelli ◽  
Cristina Realmuto ◽  
...  

BackgroundThe close relationship between joints and gut inflammation has long been known and several data suggest that dysbiosis could link spondyloarthritis (SpA) to inflammatory bowel diseases (IBD). The introduction of biological drugs, in particular tumour necrosis factor inhibitors (TNFi), revolutionised the management of both these diseases. While the impact of conventional drugs on gut microbiota is well known, poor data are available about TNFi.AimTo investigate the impact of TNFi on gut microbiota.MethodsWe evaluated 20 patients affected by enteropathic arthritis, naïve for biological drugs, treated with TNFi at baseline and after 6 months of therapy. All patients followed a Mediterranean diet. Patients performed self-sampling of a faecal sample at baseline and after 6 months of therapy. NGS-based ITS and 16S rRNA gene sequencing was performed, followed by the taxonomic bioinformatics analysis.ResultsAfter 6 months of therapy, we detected a remarkable increase in Lachnospiraceae family (Δ +10.3, p=0.04) and Coprococcus genus (Δ +2.8, p=0.003). We also noted a decreasing trend in Proteobacteria (Δ −8.0, p=0.095) and Gammaproteobacteria (Δ −9, p=0.093) and an increasing trend in Clostridia (Δ +8.2, p=0.083). We did not find differences between TNFi responders (SpA improvement or IBD remission achieved) and non-responders in terms of alpha and beta diversity.ConclusionsOur findings are consistent with the hypothesis that TNFi therapy tends to restore the intestinal eubiosis.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Nancy Wassef ◽  
David Sarkar ◽  
Girish Viswanathan ◽  
Gareth Morgan Hughes ◽  
Thomas Sailsbury ◽  
...  

Abstract Background The prevalence of culture negative infective endocarditis (IEC) is reported as 2–7% though this figure may be as high as 70% in developing countries.1 This higher rate will, at least in part, be due to reduced diagnostic facilities though some data suggests higher rates even when appropriate cultures were taken. The frequency is significantly elevated in patients who have already been exposed to antibiotics prior to blood cultures.1,2 A rare cause of culture negative IEC is the HACEK group of organisms that are normal habitants of the oropharyngeal flora and account for 1–3% of native valve endocarditis.3Aggregatibacter aphrophilus (A. aphrophilus) is a member of the HACEK group of organisms. Case summary A 32-year-old gentleman with a previous bioprosthetic aortic valve presented with a 1-week history of diarrhoea, vomiting, malaise, and weight loss. He was awaiting redo surgery for stenosis of the bioprosthesis, which had been inserted aged 17 for aortic stenosis secondary to a bicuspid valve. The initial blood tests revealed liver and renal impairment with anaemia. A transoesophageal echocardiogram demonstrated a complex cavitating aortic root abscess, complicated by perforation into the right ventricle. He underwent emergency redo surgery requiring debridement of the aortic abscess, insertion of a mechanical aortic prosthesis (St Jude Medical, USA), annular reconstruction and graft replacement of the ascending aorta. Despite antibiotic therapy, he remained septic with negative blood and tissue cultures. Bacterial 16S rRNA gene sequencing confirmed A. aphrophilus infection, for which intravenous ceftriaxone was initiated. This was subsequently changed to ciprofloxacin due to neutropenia. The patient self-discharged from the hospital during the third week of antibiotic therapy. One week later, he was re-admitted with fever, night sweats, and dyspnoea. Transthoracic echocardiogram revealed a large recurrent aortic abscess cavity around the aortic annulus fistulating into the right heart chambers; this was confirmed by a computed tomography scan. There was dehiscence of the patch repair. Emergency redo aortic root replacement (25 mm mechanical valve conduit, ATS Medical, USA) and annular reconstruction was performed with venoarterial extracorporeal membrane oxygenation (VA-ECMO) support. VA-ECMO was weaned after 3 days. The patient completed a full course of intravenous meropenem and ciprofloxacin and made a good recovery. Discussion IEC with oropharyngeal HACEK organisms is rare and difficult to diagnose, due to negative blood culture results. The broad-range polymerase chain reaction and gene sequencing with comparison to the DNA database is useful in these circumstances. This case demonstrates the importance of the 16S rRNA gene sequencing for HACEK infection diagnosis and appropriate antibiotic treatment.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1636
Author(s):  
Emily Jones ◽  
Régis Stentz ◽  
Andrea Telatin ◽  
George M. Savva ◽  
Catherine Booth ◽  
...  

The gastrointestinal tract harbors the gut microbiota, structural alterations of which (dysbiosis) are linked with an increase in gut permeability (“leaky gut”), enabling luminal antigens and bacterial products such as nanosized bacterial extracellular vesicles (BEVs) to access the circulatory system. Blood-derived BEVs contain various cargoes and may be useful biomarkers for diagnosis and monitoring of disease status and relapse in conditions such as inflammatory bowel disease (IBD). To progress this concept, we developed a rapid, cost-effective protocol to isolate BEV-associated DNA and used 16S rRNA gene sequencing to identify bacterial origins of the blood microbiome of healthy individuals and patients with Crohn’s disease and ulcerative colitis. The 16S rRNA gene sequencing successfully identified the origin of plasma-derived BEV DNA. The analysis showed that the blood microbiota richness, diversity, or composition in IBD, healthy control, and protocol control groups were not significantly distinct, highlighting the issue of ‘kit-ome’ contamination in low-biomass studies. Our pilot study provides the basis for undertaking larger studies to determine the potential use of blood microbiota profiling as a diagnostic aid in IBD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarah Zecchin ◽  
Simona Crognale ◽  
Patrizia Zaccheo ◽  
Stefano Fazi ◽  
Stefano Amalfitano ◽  
...  

Arsenic mobilization in groundwater systems is driven by a variety of functionally diverse microorganisms and complex interconnections between different physicochemical factors. In order to unravel this great ecosystem complexity, groundwaters with varying background concentrations and speciation of arsenic were considered in the Po Plain (Northern Italy), one of the most populated areas in Europe affected by metalloid contamination. High-throughput Illumina 16S rRNA gene sequencing, CARD-FISH and enrichment of arsenic-transforming consortia showed that among the analyzed groundwaters, diverse microbial communities were present, both in terms of diversity and functionality. Oxidized inorganic arsenic [arsenite, As(III)] was the main driver that shaped each community. Several uncharacterized members of the genus Pseudomonas, putatively involved in metalloid transformation, were revealed in situ in the most contaminated samples. With a cultivation approach, arsenic metabolisms potentially active at the site were evidenced. In chemolithoautotrophic conditions, As(III) oxidation rate linearly correlated to As(III) concentration measured at the parental sites, suggesting that local As(III) concentration was a relevant factor that selected for As(III)-oxidizing bacterial populations. In view of the exploitation of these As(III)-oxidizing consortia in biotechnology-based arsenic bioremediation actions, these results suggest that contaminated aquifers in Northern Italy host unexplored microbial populations that provide essential ecosystem services.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 879
Author(s):  
Stefan G. Buzoianu ◽  
Ava M. Firth ◽  
CallaBria Putrino ◽  
Fabio Vannucci

A healthy microbial community in the gut of piglets is critical to minimize the negative performance consequences associated with dietary and environmental changes that occur at weaning. Tonisity Px, an isotonic protein drink, is a potential alternative to balance the gut microbiota as it contains key ingredients for nourishing the small intestine. In the present study, 16 litters comprising 161 piglets were randomly allocated to a group to which Tonisity Px was provided from days 2 to 8 of age (TPX group) or to a control group, to which no Tonisity Px was provided. The TPX group also received Tonisity Px in the 3 days before and after weaning. At days 9, 17, and 30 of age, fecal and ileum samples were collected from piglets belonging to both groups and analyzed using 16S rRNA gene sequencing, semiquantitative PCR of Rotavirus serogroups, and semiquantitative Escherichia coli culture. Overall, Tonisity Px increased the abundance of beneficial bacterial populations (Lactobacillus and Bacteroides species) and reduced potentially pathogenic bacterial populations (E. coli and Prevotellaceae), in both the pre-weaning and post-weaning periods.


2016 ◽  
Vol 79 (8) ◽  
pp. 1430-1435 ◽  
Author(s):  
MARGHERITA CHIERICI ◽  
CLAUDIA PICOZZI ◽  
MARISA GRAZIA LA SPINA ◽  
CARLA ORSI ◽  
ILEANA VIGENTINI ◽  
...  

ABSTRACT The blue discoloration in Mozzarella cheese comes from bacterial spoilage due to contamination with Pseudomonas. Fourteen Pseudomonas fluorescens strains from international collections and 55 new isolates of dominant bacterial populations from spoiled fresh cheese samples were examined to assess genotypic and phenotypic strain diversity. Isolates were identified by 16S rRNA gene sequencing and tested for the production of the blue pigment at various temperatures on Mascarpone agar and in Mozzarella preserving fluid (the salty water in which the cheese is conserved, which becomes enriched by cheese minerals and peptides during storage). Pulsed-field gel electrophoresis analysis after treatment with the endonuclease SpeI separated the isolates into 42 genotypes at a similarity level of 80%. Based on the pulsotype clustering, 12 representative strains producing the blue discoloration were chosen for the multilocus sequence typing targeting the gyrB, glnS, ileS, nuoD, recA, rpoB, and rpoD genes. Four new sequence typing profiles were discovered, and the concatenated sequences of the investigated loci grouped the tested strains into the so-called “blue branch” of the P. fluorescens phylogenetic tree, confirming the linkage between pigment production and a specific genomic cluster. Growth temperature affected pigment production; the blue discoloration appeared at 4 and 14°C but not at 30°C. Similarly, the carbon source influenced the phenomenon; the blue phenotype was generated in the presence of glucose but not in the presence of galactose, sodium succinate, sodium citrate, or sodium lactate.


Author(s):  
Mónica Marcela Higuita-Valencia ◽  
Olga Inés Montoya Campuzano ◽  
Edna Judith Márquez Fernández ◽  
Claudia Ximena Moreno Herrera

The microbial diversity of Lobatus gigas has not been thoroughly studied despite of them is a specie endangered. Knowledge of microbiota may help to improve the conservation and cultivation of this species. The objective of this study was to evaluate the bacterial populationsassociated with the gonad and the gut compartments of the wild endangered L. gigas from the Caribbean Seaflower Biosphere Reserve, using microbiological methods and culture-independent molecular tools. The genetic profiles of the bacterial populations were generated and Temporal Temperature Gradient Electrophoresis (TTGE) was used to compare them with total DNA. A genetic and statistical analysis of the bacterial communities revealed a low level of diversity in gonad tissue based on the number of bands detected using TTGE. In addition, statistical differences in bacterial community structure were found between the foregut and hindgut tissue of L. gigas. The dominant phylogenetic affiliations of the gonad bacteria, as determined using 16S rRNA gene sequencing, belong to Ralstonia (50%). The possible involvement of this genus in the reproduction and development of the conch is discussed. On the other hand, the bacterial phylotypes from foregut and hindgut included members of  Alphaproteobactera (12.5%), Betaproteobacteria (12.5%), Gammaproteobacteria (12.5%), Bacilli (31.25%), Clostridia (6.25%), Actinobacteria (6.25%), Mollicutes (6.25%) and Deinococci (6.25%) classes. Knowing the composition of the gonad and foregut and hindgut bacteria of L. gigas is the first step toward exploring the proper management of this species, as well as provides useful information to future researches that allow a better understanding of the role of these bacterial populations in the health and reproductive rate of L. gigas.


2017 ◽  
Vol 118 (7) ◽  
pp. 513-524 ◽  
Author(s):  
Manuela M. Fischer ◽  
Alexandre M. Kessler ◽  
Dorothy A. Kieffer ◽  
Trina A. Knotts ◽  
Kyoungmi Kim ◽  
...  

AbstractSurveys report that 25–57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (P<0·05) of Firmicutes and lower abundance (P<0·05) of Bacteroidetes compared with the other groups. The greater abundance of Firmicutes in lean neutered cats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (P<0·05). Energy reduction was concurrent with significant shifts in two low-abundance bacterial genera and trends in four additional genera. The greatest change was a reduction in the Firmicutes genus,Sarcina, from 4·54 to 0·65 % abundance after energy restriction. The short duration of energy restriction may explain why few bacterial changes were observed in the obese cats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.


Sign in / Sign up

Export Citation Format

Share Document