Detection of a novel bunyavirus associated with fever, thrombocytopenia and leukopenia syndrome in Henan Province, China, using real-time reverse transcription PCR

2013 ◽  
Vol 62 (7) ◽  
pp. 1060-1064 ◽  
Author(s):  
Xueyong Huang ◽  
Licheng Liu ◽  
Yanhua Du ◽  
Hongxia Ma ◽  
Yujiao Mu ◽  
...  

A novel bunyavirus associated with fever, thrombocytopenia and leukopenia syndrome (FTLS) was discovered in Henan Province, China. Here, we report the development of an assay for this novel bunyavirus based on real-time reverse transcription PCR (RT-PCR). The assay exhibited high sensitivity and specificity without cross-reactivity towards 13 other viruses that cause similar symptoms. To evaluate the performance of this assay in detecting clinical samples, we analysed 261 serum samples from patients in Henan Province between 2007 and 2010. Of these samples, 91.95 % were bunyavirus positive. Compared with serological assays, the real-time PCR assay was much more sensitive in identifying infected patients 1 to 7 days after the onset of symptoms.

2011 ◽  
Vol 74 (5) ◽  
pp. 840-843 ◽  
Author(s):  
AYSUN YILMAZ ◽  
KAMIL BOSTAN ◽  
EDA ALTAN ◽  
KARLO MURATOGLU ◽  
NURI TURAN ◽  
...  

Investigation of norovirus (NoV) contamination of food items is important because many outbreaks occur after consumption of contaminated shellfish, vegetables, fruits, and water. The frequency of NoV contamination in food items has not previously been investigated in Turkey. The aim of this study was to investigate the frequency of human NoV genogroups (G) I and II in ready-to-eat tomatoes, parsley, green onion, lettuce, mixed salads, and cracked wheat balls. RNA was extracted with the RNeasy Mini Kit, and a real-time reverse transcription (RT) PCR assay was performed using primers specific for NoV GI and GII. Among the 525 samples analyzed, NoV GII was detected in 1 green onion sample and 1 tomato sample by both SYBR Green and TaqMan real-time RT-PCR assays; no GI virus was detected. The Enterobactericaeae and Escherichia coli levels in the NoV-positive green onion were 6.56 and 1.28 log CFU/g, and those in the tomato were 5.55 and 1.30 log CFU/g, respectively. No significant difference in the bacterial levels was found between the NoV-positive and NoV-negative samples. This study is the first in which NoV GII was found in ready-to-eat food collected from Istanbul, Turkey; thus, these foods may be considered a risk to human health. Epidemiological studies and measures to prevent NoV infection should be considered.


1999 ◽  
Vol 37 (3) ◽  
pp. 524-530 ◽  
Author(s):  
Arno C. Andeweg ◽  
Theo M. Bestebroer ◽  
Martijn Huybreghs ◽  
Tjeerd G. Kimman ◽  
Jan C. de Jong

This paper describes the development and evaluation of a new nested reverse transcription (RT)-PCR for the detection of rhinovirus in clinical samples. The nucleotide sequences of the 5′ noncoding regions of 39 rhinoviruses were determined in order to map the most conserved subregions. We designed a set of rhinovirus-specific primers and probes directed to these subregions and developed a new nested RT-PCR. The new assay includes an optimal RNA extraction method and amplicon identification with probe hybridization to discriminate between rhinoviruses and the closely related enteroviruses. It proved to be highly sensitive and specific. When tested on a dilution series of cultured viruses, the new PCR protocol scored positive at 10- to 100-fold-higher dilutions than a previously used nested RT-PCR. When tested on a collection of clinical samples obtained from 1,070 acute respiratory disease patients who had consulted their general practitioners, the new assay demonstrated a rhinovirus in 24% of the specimens, including all culture-positive samples, whereas the previously used PCR assay or virus culture detected a rhinovirus in only 3.5 to 6% of the samples. This new assay should help determine the disease burden associated with rhinovirus infections.


2011 ◽  
Vol 49 (7) ◽  
pp. 2620-2624 ◽  
Author(s):  
Susan Bennett ◽  
Heli Harvala ◽  
Jeroen Witteveldt ◽  
E. Carol McWilliam Leitch ◽  
Nigel McLeish ◽  
...  

2010 ◽  
Vol 155 (6) ◽  
pp. 817-823 ◽  
Author(s):  
Chad M. Fuller ◽  
Lina Brodd ◽  
Richard M. Irvine ◽  
Dennis J. Alexander ◽  
Elizabeth W. Aldous

2018 ◽  
Author(s):  
Tatsuya Nishi ◽  
Toru Kanno ◽  
Nobuaki Shimada ◽  
Kazuki Morioka ◽  
Makoto Yamakawa ◽  
...  

AbstractBecause foot-and-mouth disease (FMD) has the potential to spread extensively, methods used for its diagnosis must be rapid and accurate. Therefore, reverse transcription-PCR (RT-PCR) plays an important diagnostic role. Here we designed the primer set FM8/9 to amplify 644 bases of the conserved 3D region of all seven serotypes of FMD virus (FMDV). We compared the performance of RT-PCR assays using FM8/9 with that using the primer set 1F/R targeting the 5’-UTR described in the manual of the World Organization for Animal Health. The detection limits of the RT-PCR assays were determined for 14 strains representing all serotypes. Compared with the sensitivities of the RT-PCR assay using 1F/R, those using FM8/9 were 101-to 104-fold higher for eight strains. To assess the validity of the methods for analyzing clinical samples, sera and saliva samples from pigs and cows infected with FMDV were collected daily and analyzed using the two PCR assays. The FM8/9 assay detected FMDV from all infected pigs and cows for longer times compared with the 1F/R assay, therefore revealing higher sensitivity for the clinical samples. Our results suggest that the FM8/9 RT-PCR assay is highly sensitive and is therefore suitable for the diagnosis of FMD.


2006 ◽  
Vol 72 (6) ◽  
pp. 3846-3855 ◽  
Author(s):  
M. Isabel Costafreda ◽  
Albert Bosch ◽  
Rosa M. Pint�

ABSTRACT A standardized real-time reverse transcription-PCR (RT-PCR) assay has been developed for an accurate estimation of the number of genome copies of hepatitis A virus (HAV) in clinical and shellfish samples. Real-time procedures were based on the amplification of a fragment of the highly conserved 5′ noncoding region and detection through an internal fluorescent probe, including TaqMan and beacon chemistries, in one- and two-step RT-PCR formats. The best performance in terms of sensitivity and reproducibility was achieved by a one-step TaqMan RT-PCR, with a sensitivity enabling the detection of 0.05 infectious unit and 10 copies of a single-stranded RNA (ssRNA) synthetic transcript. Standard reagents, such as a mengovirus strain and an ssRNA transcript, were employed as controls of nucleic acid extraction and RT-PCR, respectively. The test proved to be highly specific after a broad panel of enteric viruses was tested. Sequence alignment of target regions of the primers and probe proved them to be adequate for the quantification of all HAV genotypes. In addition, a quasispecies analysis of the mutant spectrum indicated that these regions are not prone to variability, thus confirming their robustness.


2013 ◽  
Vol 79 (21) ◽  
pp. 6585-6592 ◽  
Author(s):  
Takayuki Miura ◽  
Sylvain Parnaudeau ◽  
Marco Grodzki ◽  
Satoshi Okabe ◽  
Robert L. Atmar ◽  
...  

ABSTRACTNorovirus is the most common agent implicated in food-borne outbreaks and is frequently detected in environmental samples. These viruses are highly diverse, and three genogroups (genogroup I [GI], GII, and GIV) infect humans. Being noncultivable viruses, real-time reverse transcription-PCR (RT-PCR) is the only sensitive method available for their detection in food or environmental samples. Selection of consensus sequences for the design of sensitive assays has been challenging due to sequence diversity and has led to the development of specific real-time RT-PCR assays for each genogroup. Thus, sample screening can require several replicates for amplification of each genogroup (without considering positive and negative controls or standard curves). This study reports the development of a generic assay that detects all three human norovirus genogroups on a qualitative basis using a one-step real-time RT-PCR assay. The generic assay achieved good specificity and sensitivity for all three genogroups, detected separately or in combination. At variance with multiplex assays, the choice of the same fluorescent dye for all three probes specific to each genogroup allows the levels of fluorescence to be added and may increase assay sensitivity when multiple strains from different genogroups are present. When it was applied to sewage sample extracts, this generic assay successfully detected norovirus in all samples found to be positive by the genogroup-specific RT-PCRs. The generic assay also identified all norovirus-positive samples among 157 archived nucleic acid shellfish extracts, including samples contaminated by all three genogroups.


2004 ◽  
Vol 50 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Leo L M Poon ◽  
Kwok Hung Chan ◽  
On Kei Wong ◽  
Timothy K W Cheung ◽  
Iris Ng ◽  
...  

Abstract Background: A novel coronavirus (CoV) was recently identified as the agent for severe acute respiratory syndrome (SARS). We compared the abilities of conventional and real-time reverse transcription-PCR (RT-PCR) assays to detect SARS CoV in clinical specimens. Methods: RNA samples isolated from nasopharyngeal aspirate (NPA; n = 170) and stool (n = 44) were reverse-transcribed and tested by our in-house conventional RT-PCR assay. We selected 98 NPA and 37 stool samples collected at different times after the onset of disease and tested them in a real-time quantitative RT-PCR specific for the open reading frame (ORF) 1b region of SARS CoV. Detection rates for the conventional and real-time quantitative RT-PCR assays were compared. To investigate the nature of viral RNA molecules in these clinical samples, we determined copy numbers of ORF 1b and nucleocapsid (N) gene sequences of SARS CoV. Results: The quantitative real-time RT-PCR assay was more sensitive than the conventional RT-PCR assay for detecting SARS CoV in samples collected early in the course of the disease. Real-time assays targeted at the ORF 1b region and the N gene revealed that copy numbers of ORF 1b and N gene sequences in clinical samples were similar. Conclusions: NPA and stool samples can be used for early diagnosis of SARS. The real-time quantitative RT-PCR assay for SARS CoV is potentially useful for early detection of SARS CoV. Our results suggest that genomic RNA is the predominant viral RNA species in clinical samples.


Sign in / Sign up

Export Citation Format

Share Document