Concurrence between the gene expression pattern of Actinobacillus actinomycetemcomitans in localized aggressive periodontitis and in human epithelial cells

2005 ◽  
Vol 54 (5) ◽  
pp. 497-504 ◽  
Author(s):  
Joseph Richardson ◽  
Justin Corey Craighead ◽  
Sam Linsen Cao ◽  
Martin Handfield

Actinobacillus actinomycetemcomitans is a facultatively intracellular pathogen and the aetiological agent of localized aggressive periodontitis. Screening of the genome of A. actinomycetemcomitans for in vivo-induced antigen determinants previously demonstrated that the proteome of this organism differs in laboratory culture compared with conditions found during active infection. The aim of the present study was to determine whether the bacterial gene expression pattern inferred with in vivo-induced antigen technology (IVIAT) in human infections was consistent with the gene expression pattern occurring upon epithelial cell association. To this end, a real-time PCR method was developed and used to quantify absolute and relative bacterial gene expression of A. actinomycetemcomitans grown extra- and intracellularly in two human epithelial cell lines (HeLa and IHGK). The amount of template used in the assay was normalized using the total count of viable bacteria (c.f.u.) as a reference point and performed in duplicate in at least two independent experiments. Controls for this experiment included 16S rRNA and gapdh. Transcription of all eight ORFs tested increased significantly (P < 0.05) in HeLa and IHGK cells compared with bacteria grown extracellularly. The concurrence of gene expression patterns found in the two models suggests that these epithelial cells are valid in vitro models of infection for the genes tested. IVIAT is an experimental platform that can be used as a validation tool to assess the reliability of animal and other models of infection and is applicable to most pathogens.

2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


2005 ◽  
Vol 84 ◽  
pp. S435
Author(s):  
A. Cervero ◽  
J.A. Horcajadas ◽  
R. Catalano ◽  
A. Sharkey ◽  
A. Pellicer ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 161
Author(s):  
A. Velasquez ◽  
D. Veraguas ◽  
F. O. Castro ◽  
J. F. Cox ◽  
L. l. Rodriguez-Alvarez

It is known that embryos produced in vitro are less competent than their in vivo-derived counterparts. When embryos are produced or manipulated in vitro, their developmental potential decreases significantly, which impinges upon the production of viable offspring. In bovines, embryos that will be transferred to a surrogate mother are selected at the blastocysts stage using noninvasive methods, such as their morphological features. However, many of those embryos are not able to implant or to maintain a normal pregnancy because embryo morphology does not reflect its developmental potential and a correct gene expression pattern that support a normal development. It seems that the ideal method for embryo selection would be based on the screening of gene markers that correlate with successful pregnancy after embryo transfer. In that sense, we have proposed an approach to characterise gene expression pattern of early (Day 7) bovine blastocysts and to correlate this gene expression with further developmental potential in vivo, i.e. upon elongation until Day 17. For that, it was established an efficient method to produce identical and viable hemi-embryos by splitting IVF bovine blastocysts in order to set the expression profile of certain genes in one hemi-embryo at blastocyst stage, while the counterpart embryo elongates in vivo for 10 days. A total of 129 blastocysts were split. Six groups of blastocysts were used for splitting and the results compared: 1) Day-7 early blastocysts (n = 20); 2) Day-7 expanded blastocysts (n = 25); 3) Day-7 hatched blastocysts (n = 17); 4) Day-8 early blastocysts (n = 10); 5) Day-8 expanded blastocysts (n = 12); and 6) Day-8 hatched blastocysts (n = 45). Hemi-embryos derived from day-8 grade I and well expanded blastocysts had the greatest survival rate, in vitro re-expansion (67.7%; P < 0.05) and both hemi-embryos conserved a normal morphology with a total cell number over 80 after 6 h in culture. Also both hemi-embryos at blastocyst stage showed homogeneous expression pattern of the genes OCT4, SOX2, NANOG, CDX2, ACTB, and GAPDH (P < 0.05). Finally, the in vivo survival of hemi-embryos was assessed and compared with nonsplit embryos (control) by transferring to recipient cow and collecting at Day 17 of development. For this, hemi-embryos derived from Day-8 hatched blastocyst were used. From 14 transferred hemi-embryos, 5 (35.7%) were collected, and 9 elongated from 17 controls were recovered (52.9%). Also the elongation rate was significantly lower in hemi-embryos than in control; the length of hemi-embryos had a range between 1 and 5 cm, whereas 60% of the control embryos were longer than 10 cm. Our results provide an initial approach to study the correlation among the gene expression characteristics of early bovine embryos with their further development. However, it seems that embryo splitting hampers their elongation in vivo. It might be possible that the development of split embryos is retarded because of manipulation. This work was partially supported by Fondecyt grant no. 11100082 from the Ministry of Education of Chile.


2000 ◽  
Vol 355 (1397) ◽  
pp. 601-611 ◽  
Author(s):  
Isabelle Hautefort ◽  
Jay C. D. Hinton

The complexities of bacterial gene expression during mammalian infection cannot be addressed by in vitro experiments. We know that the infected host represents a complex and dynamic environment, which is modified during the infection process, presenting a variety of stimuli to which the pathogen must respond if it is to be successful. This response involves hundreds of ivi (in vivo– induced) genes which have recently been identified in animal and cell culture models using a variety of technologies including in vivo expression technology, differential fluorescence induction, subtractive hybridization and differential display. Proteomic analysis is beginning to be used to identify IVI proteins, and has benefited from the availability of genome sequences for increasing numbers of bacterial pathogens. The patterns of bacterial gene expression during infection remain to be investigated. Are ivi genes expressed in an organ–specific or cell–type–specific fashion ? New approaches are required to answer these questions. The uses of the immunologically based in vivo antigen technology system, in situ PCR and DNA microarray analysis are considered. This review considers existing methods for examining bacterial gene expression in vivo, and describes emerging approaches that should further our understanding in the future.


2011 ◽  
Vol 23 (1) ◽  
pp. 134
Author(s):  
C. H. Park ◽  
S. G. Lee ◽  
H. J. Lee ◽  
T. K. Jung ◽  
Y. H. Jeong ◽  
...  

It was recently shown that treatment of cloned embryos with histone deacetylase inhibitors improves efficiency for the success rate of developmental potential to term in several species. The objective of the present study was to investigate the influence of the histone deacetylase inhibitor Scriptaid (Sc) on in vitro development in early porcine SCNT embryos and on their gene expression pattern. Based on the findings of previous porcine studies (Zhao et al. 2009), the reconstructed oocytes were treated with 500 nM Scriptaid for 14 to 16 h after post-fusion activation (6-DMAP/demecolcine). In our preliminary study, blastocyst rate significantly increased in the Sc-treated group, compared with the control group (25.1 ± 2.8% and 13.8 ± 1.9%, respectively, P < 0.05). We determined gene expression using quantitative real-time RT-PCR. The results showed that OCT3/4 gene was expressed at a similar level in in vivo and SCNT blastocysts with/without Sc. IGF2 and H19 genes tended to be highly expressed in both SCNT blastocysts with (1.6-fold and 3.1-fold, respectively) and without (2.0-fold and 5.8-fold, respectively) Sc than that of the in vivo blastocysts. We found differences in imprinted gene expression patterns between in vivo and cloned blastocysts. Expression of H19 and IGF2 in SCNT blastocysts after Scriptaid treatment decreased towards the expression levels of in vivo blastocysts. These results indicated that Scriptaid treatment in SCNT embryos may also have beneficial effects on in vitro developmental competence as well as their gene expression pattern.


2002 ◽  
Vol 283 (6) ◽  
pp. L1315-L1321 ◽  
Author(s):  
Yingjian You ◽  
Edward J. Richer ◽  
Tao Huang ◽  
Steven L. Brody

Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 × 104 cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document