scholarly journals Delving into defence: identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Silas H. W. Vick ◽  
Belinda K. Fabian ◽  
Catherine J. Dawson ◽  
Christie Foster ◽  
Amy Asher ◽  
...  

Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Matthew P. Moore ◽  
Iain L. Lamont ◽  
David Williams ◽  
Steve Paterson ◽  
Irena Kukavica-Ibrulj ◽  
...  

The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Daniel Garrido-Sanz ◽  
Miguel Redondo-Nieto ◽  
Marta Martin ◽  
Rafael Rivilla

Pseudomonas corrugata constitute one of the phylogenomic subgroups within the Pseudomonas fluorescens species complex and include both plant growth-promoting rhizobacteria (PGPR) and plant pathogenic bacteria. Previous studies suggest that the species diversity of this group remains largely unexplored together with frequent misclassification of strains. Using more than 1800 sequenced Pseudomonas genomes we identified 121 genomes belonging to the P. corrugata subgroup. Intergenomic distances obtained using the genome-to-genome blast distance (GBDP) algorithm and the determination of digital DNA–DNA hybridization values were further used for phylogenomic and clustering analyses, which revealed 29 putative species clusters, of which only five correspond to currently named species within the subgroup. Comparative and functional genome-scale analyses also support the species status of these clusters. The search for PGPR and plant pathogenic determinants showed that approximately half of the genomes analysed could have a pathogenic behaviour based on the presence of a pathogenicity genetic island, while all analysed genomes possess PGPR traits. Finally, this information together with the characterization of phenotypic traits, allows the reclassification proposal of Pseudomonas fluorescens F113 as Pseudomonas ogarae sp. nov., nom rev., type strain F113T (=DSM 112162T=CECT 30235T), which is substantiated by genomic, functional genomics and phenotypic differences with their closest type strains.


2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Christopher A. Mullally ◽  
August Mikucki ◽  
Michael J. Wise ◽  
Charlene M. Kahler

Neisseria meningitidis , the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3280-3286 ◽  
Author(s):  
Iris Kuo ◽  
Jimmy Saw ◽  
Durrell D. Kapan ◽  
Stephanie Christensen ◽  
Kenneth Y. Kaneshiro ◽  
...  

Strain IK-1T was isolated from decaying tissues of the shrub Wikstroemia oahuensis collected on O‘ahu, Hawai‘i. Cells were rods that stained Gram-negative. Gliding motility was not observed. The strain was oxidase-negative and catalase-positive. Zeaxanthin was the major carotenoid. Flexirubin-type pigments were not detected. The most abundant fatty acids in whole cells of IK-1T grown on R2A were iso-C15 : 0 and one or both of C16 : 1ω7c and C16 : 1ω6c. Based on comparisons of the nucleotide sequence of the 16S rRNA gene, the closest neighbouring type strains were Flavobacterium rivuli WB 3.3-2T and Flavobacterium subsaxonicum WB 4.1-42T, with which IK-1T shares 93.84 and 93.67 % identity, respectively. The G+C content of the genomic DNA was 44.2 mol%. On the basis of distance from its nearest phylogenetic neighbours and phenotypic differences, the species Flavobacterium akiainvivens sp. nov. is proposed to accommodate strain IK-1T ( = ATCC BAA-2412T = CIP 110358T) as the type strain. The description of the genus Flavobacterium is emended to reflect the DNA G+C contents of Flavobacterium akiainvivens IK-1T and other species of the genus Flavobacterium described since the original description of the genus.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3563-3567 ◽  
Author(s):  
Wei-Yan Zhang ◽  
Yuan Meng ◽  
Xu-Fen Zhu ◽  
Min Wu

A novel extremely halophilic archaeon KCY07-B2T was isolated from a salt mine in Kuche county, Xinjiang province, China. Colonies were cream-pigmented and cells were pleomorphic rod-shaped. Strain KCY07-B2T was able to grow at 25–50 °C (optimum 37–45 °C) and pH 6.0–8.0 (optimum 7.0). The strain required at least 1.9 M NaCl for growth. MgCl2 was not required. Cells lysed in distilled water. Polar lipid analysis revealed the presence of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, derived from both C20C20 and C20C25 glycerol diethers, together with five glyolipids. The bis-sulfated glycolipid S2-DGD-1 was present. The DNA G+C content was 62.5 mol%. Analysis of the 16S rRNA gene sequence revealed that strain KCY07-B2T was closely related to Halopiger xanaduensis SH-6T and Halopiger aswanensis 56T (95.8 % and 95.5 % similarity, respectively). On the basis of its phenotypic, chemotaxonomic and genotypic characteristics, strain KCY07-B2T is considered to represent a novel species of the genus Halopiger , for which the name Halopiger salifodinae sp. nov. is proposed. The type strain is KCY07-B2T ( = JCM 18547T = CGMCC 1.12284T).


Sign in / Sign up

Export Citation Format

Share Document