scholarly journals Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Matthew P. Moore ◽  
Iain L. Lamont ◽  
David Williams ◽  
Steve Paterson ◽  
Irena Kukavica-Ibrulj ◽  
...  

The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.

2021 ◽  
Vol 7 (10) ◽  
Author(s):  
Christopher A. Mullally ◽  
August Mikucki ◽  
Michael J. Wise ◽  
Charlene M. Kahler

Neisseria meningitidis , the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Genevieve Johnson ◽  
Alan J. Wolfe ◽  
Catherine Putonti

Bacteriophages (phages) are vital members of the human microbiota. They are abundant even within low biomass niches of the human body, including the lower urinary tract. While several prior studies have cultured bacteria from kidney stones, this is the first study to explore phages within the kidney stone microbiota. Here we report Dobby, a temperate phage isolated from a strain of Pseudomonas aeruginosa cultured from a kidney stone. Dobby is capable of lysing clinical P. aeruginosa strains within our collection from the urinary tract. Sequencing was performed producing a 37 152 bp genome that closely resembles the temperate P. aeruginosa phage φCTX, a member of the P2 phage group. Dobby does not, however, encode for the cytotoxin CTX. Dobby’s genome was queried against publicly available bacterial sequences identifying 44 other φCTX-like prophages. These prophages are integrated within the genomes of P. aeruginosa strains from a variety of environments, including strains isolated from urine samples and other niches of the human body. Phylogenetic analysis suggests that the temperate φCTX phage species is widespread. With the isolation of Dobby, we now have evidence that phages are members of the kidney stone microbiota. Further investigation, however, is needed to determine their abundance and diversity within these communities.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Hyo-Young Oh ◽  
Shivakumar S. Jalde ◽  
In-Young Chung ◽  
Yeon-Ji Yoo ◽  
Hye-Jeong Jang ◽  
...  

Introduction. Antipathogenic or antivirulence strategy is to target a virulence pathway that is dispensable for growth, in the hope to mitigate the selection for drug resistance. Hypothesis/Gap Statment. Peroxide stress responses are one of the conserved virulence pathways in bacterial pathogens and thus good targets for antipathogenic strategy. Aim. This study aims to identify a new chemical compound that targets OxyR, the peroxide sensor required for the full virulence of the opportunistic human pathogen, Pseudomonas aeruginosa . Methodology. Computer-based virtual screening under consideration of the ‘eNTRy’ rules and molecular docking were conducted on the reduced form of the OxyR regulatory domain (RD). Selected hits were validated by their ability to phenocopy the oxyR null mutant and modulate the redox cycle of OxyR. Results. We first isolated three robust chemical hits that inhibit OxyR without affecting prototrophic growth or viability. One (compound 1) of those affected the redox cycle of OxyR in response to H2O2 treatment, in a way to impair its function. Compound 1 displayed selective antibacterial efficacy against P. aeruginosa in Drosophila infection model, without antibacterial activity against Staphylococcus aureus . Conclusion. These results suggest that compound 1 could be an antipathogenic hit inhibiting the P. aeruginosa OxyR. More importantly, our study provides an insight into the computer-based discovery of new-paradigm selective antibacterials to treat Gram-negative bacterial infections presumably with few concerns of drug resistance.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aya Ahmad Elnegery ◽  
Wafaa Kamel Mowafy ◽  
Tarek Ahmed Zahra ◽  
Noha Tharwat Abou El-Khier

Background. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen responsible for burn-wound infection. High incidence, infection severity and increasing resistance characterize P. aeruginosa -induced burn infection. Purpose. To estimate quorum-sensing (QS)-dependent virulence factors of P. aeruginosa isolates from burn wounds and correlate it to the presence of QS genes. Methods. A cross-sectional descriptive study included 50 P . aeruginosa isolates from burn patients in Mansoura University Plastic and Burn Hospital, Egypt. Antibiotic sensitivity tests were done. All isolates were tested for their ability to produce biofilm using a micro-titration assay method. Protease, pyocyanin and rhamnolipid virulence factors were determined using skimmed milk agar, King’s A medium and CTAB agar test, respectively. The identity of QS lasR and rhlR genes was confirmed using PCR. Results. In total, 86 % of isolates had proteolytic activity. Production of pyocyanin pigment was manifested in 66 % of isolates. Altogether, 76 % of isolates were rhamnolipid producers. Biofilm formation was detected in 96 % of isolates. QS lasR and rhlR genes were harboured by nearly all isolates except three isolates were negative for both lasR and rhlR genes and two isolates were positive for lasR gene and negative for rhlR gene. Forty-nine isolates were considered as extremely QS-proficient strains as they produced QS-dependent virulence factors. In contrast, one isolate was a QS deficient strain. Conclusions. QS affects P. aeruginosa virulence-factor production and biofilm in burn wounds. Isolates containing lasR and rhlR seem to be a crucial regulator of virulence factors and biofilm formation in P. aeruginosa whereas the lasR gene positively regulates biofilm formation, proteolytic activity, pyocyanin production and rhamnolipid biosurfactant synthesis. The QS regulatory RhlR gene affects protease and rhamnolipid production positively.


2020 ◽  
Vol 6 (12) ◽  
Author(s):  
Lin Zhao ◽  
Hongyou Chen ◽  
Xavier Didelot ◽  
Zhenpeng Li ◽  
Yinghui Li ◽  
...  

Vibrio parahaemolyticus is an important cause of foodborne gastroenteritis globally. Thermostable direct haemolysin (TDH) and the TDH-related haemolysin are the two key virulence factors in V. parahaemolyticus. Vibrio pathogenicity islands harbour the genes encoding these two haemolysins. The serotyping of V. parahaemolyticus is based on the combination of O and K antigens. Frequent recombination has been observed in V. parahaemolyticus , including in the genomic regions encoding the O and K antigens. V. parahaemolyticus serotype O4:K12 has caused gastroenteritis outbreaks in the USA and Spain. Recently, outbreaks caused by this serotype of V. parahaemolyticus have been reported in China. However, the relationships among this serotype of V. parahaemolyticus strains isolated in different regions have not been addressed. Here, we investigated the genome variation of the V. parahaemolyticus serotype O4:K12 using the whole-genome sequences of 29 isolates. We determined five distinct lineages in this strain collection. We observed frequent recombination among different lineages. In contrast, little recombination was observed within each individual lineage. We showed that the lineage of this serotype of V. parahaemolyticus isolated in America was different from those isolated in Asia and identified genes that exclusively existed in the strains isolated in America. Pan-genome analysis showed that strain-specific and cluster-specific genes were mostly located in the genomic islands. Pan-genome analysis also showed that the vast majority of the accessory genes in the O4:K12 serotype of V. parahaemolyticus were acquired from within the genus Vibrio . Hence, we have shown that multiple distinct lineages exist in V. parahaemolyticus serotype O4:K12 and have provided more evidence about the gene segregation found in V. parahaemolyticus isolated in different continents.


Author(s):  
Eduardo Juscamayta-López ◽  
Faviola Valdivia ◽  
Sara Morales ◽  
Luis Fernando Donaires ◽  
Victor Fiestas-Solórzano ◽  
...  

Asymptomatic carriers are a likely source of transmission of Neisseria meningitidis to close contacts who are placed at a higher risk for invasive meningococcal disease (IMD). Although N. meningitidis ciprofloxacin-resistance is rare, there have been an increase in the reports of resistant isolates mainly in patients diagnosed with IMD, and little is known about the N. meningitidis ciprofloxacin-resistance in the carrier populations. We performed a pharyngeal carriage study during a 2017 military setting outbreak in Peru, caused by a ciprofloxacin-resistant N. meningitidis B. The isolates analysed came from two hospitalized cases and six asymptomatic carriers. Whole-genome sequence-based analysis was performed and showed that strains carrying the Thr91Ile mutation, in the gene encoding for subunit A of DNA gyrase (gyrA), were responsible for the fluoroquinolone resistance (MICs ≥0.256 µg ml−1) and were closely related to highly virulent strains from France, Norway and the UK. Phylogenetic analysis of the gyrA gene revealed that likely these Peruvian isolates acquired resistance through horizontal gene transfer from Neisseria lactamica . Our study provides evidence for the emergence and propagation of ciprofloxacin-resistant N. meningitidis B from asymptomatic carriers, and recommends the introduction of serogroup B vaccines for high-risk populations.


Microbiology ◽  
2021 ◽  
Vol 167 (8) ◽  
Author(s):  
Laura Rushton ◽  
Denise Donoghue ◽  
Matthew Bull ◽  
Peter Jay ◽  
Eshwar Mahenthiralingam

Preservative efficacy testing (PET) is a fundamental practice in industrial microbiology used to ensure product shelf-life and quality. To improve on current growth-based PET, bioluminescence was evaluated as a real-time bacterial viability indicator using Pseudomonas aeruginosa . Random mutagenesis of an industrial P. aeruginosa strain with a promoter-less luxCDABE mini-Tn5 was used to select a stable reporter (LUX12H5) with an un-altered growth and preservative susceptibility phenotype. Bioluminescence and viability were measured with and without preservatives (isothiazolinones, phenoxyethanol, and dimethyl dimethylol hydantoin) and an antibiotic comparator (ciprofloxacin). In the absence of antimicrobials, a good correlation between bioluminescence and viability (r2=0.92) was established. However, metabolic inhibition by isothiazolinone preservatives caused a rapid decline in light output that did not correlate to a reduced viability. Conversely, after ciprofloxacin exposure, the decline in viability was greater than that of bioluminescence. A positive attribute of the bioluminescence was the early detection of metabolic recovery and re-growth of preservative injured bacteria. Overall, while initial bioluminescence read-outs were less suited to current PET requirements, it shows promise as an early, direct indicator of bacterial regrowth in the context of long-term evaluation of preservative efficacy.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Sufei Wang ◽  
Dandan Xiang ◽  
Fangbing Tian ◽  
Ming Ni

Introduction. Macrophages polarization is essential in infection control. Llipopolysaccharide (LPS) plays an essential role in host innate immune system–pathogen interaction. The LPS structure of Pseudomonas aeruginosa modifies in the adaptation of this pathogen to biofilm-related chronic infection. Gap statement. There have been several studies on LPS induced polarization of human and mouse macrophages with different results. And it was reported that the lipid A structure of the LPS derived from biofilm-forming Pseudomonas aeruginosa strain PAO1 was modified. Aim. This study aimed to investigate the effect and the involved pathway of LPS from biofilm-forming PAO1 on human and murine macrophage polarization. Methodology. LPS was isolated from biofilm-forming and planktonic PAO1 and quantified. Then the LPS was added to PMA-differentiated human macrophage THP-1 cells and Raw264.7 murine macrophage cells. The expression of iNOS, Arg-1, IL4, TNF-α, CCL3, and CCL22 was analysed in the different cell lines. The expression of TICAM-1 and MyD88 in human THP-1 macrophages was quantified by Western blot. PAO1 infected macrophages at different polarization states, and the intracellular bacterial growth in macrophages was evaluated. Results. LPS from biofilm-forming PAO1 induced more marked hyperinflammatory responses in THP-1 and Raw264.7 macrophages than LPS derived from planktonic PAO1, and these responses were related to the up-regulation of MyD88. Intracellular growth of PAO1 was significantly increased in THP-1 macrophages polarized by LPS from biofilm-forming PAO1, but decreased both in THP-1 and Raw264.7 macrophages polarized by LPS from planktonic PAO1. Conclusion. The presented in vitro study indicates that LPS derived from biofilm-forming PAO1 induces enhanced M1 polarization in human and murine macrophage cell lines than LPS from planktonic PAO1.


Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 777-784 ◽  
Author(s):  
James Gurney ◽  
Sheyda Azimi ◽  
Sam P. Brown ◽  
Stephen P. Diggle

In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) is a social trait that is exploitable by non-cooperating cheats. Previously it has been shown that by linking QS to the production of both public and private goods, cheats can be prevented from invading populations of cooperators and this was described by Dandekar et al. (Science 2012;338:264–266) as ‘a metabolic incentive to cooperate’. We hypothesized that P. aeruginosa could evolve novel cheating strategies to circumvent private goods metabolism by rewiring its combinatorial response to two QS signals (3O-C12-HSL and C4-HSL). We performed a selection experiment that cycled P. aeruginosa between public and private goods growth media and evolved an isolate that rewired its control of cooperative protease expression from a synergistic (AND-gate) response to dual-signal input to a 3O-C12-HSL-only response. We show that this isolate circumvents metabolic incentives to cooperate and acts as a combinatorial signalling cheat, with higher fitness in competition with its ancestor. Our results show three important principles: first, combinatorial QS allows for diverse social strategies to emerge; second, restrictions levied by private goods are not sufficient to explain the maintenance of cooperation in natural populations; and third, modifying combinatorial QS responses could result in important physiological outcomes in bacterial populations.


2020 ◽  
Vol 6 (12) ◽  
Author(s):  
Siew Woh Choo ◽  
Shusruto Rishik ◽  
Wei Yee Wee

Mycobacteroides immunogenum is an emerging opportunistic pathogen implicated in nosocomial infections. Comparative genome analyses may provide better insights into its genomic structure, functions and evolution. The present analysis showed that M. immunogenum has an open pan-genome. Approximately 36.8% of putative virulence genes were identified in the accessory regions of M. immunogenum . Phylogenetic analyses revealed two potential novel subspecies of M. immunogenum , supported by evidence from ANIb (average nucleotide identity using blast) and GGDC (Genome to Genome Distance Calculator) analyses. We identified 74 genomic islands (GIs) in Subspecies 1 and 23 GIs in Subspecies 2. All Subspecies 2-harboured GIs were not found in Subspecies 1, indicating that they might have been acquired by Subspecies 2 after their divergence. Subspecies 2 has more defence genes than Subspecies 1, suggesting that it might be more resistant to the insertion of foreign DNA and probably explaining why Subspecies 2 has fewer GIs. Positive selection analysis suggest that M. immunogenum has a lower selection pressure compared to non-pathogenic mycobacteria. Thirteen genes were positively selected and many were involved in virulence.


Sign in / Sign up

Export Citation Format

Share Document