scholarly journals Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli

Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3554-3563 ◽  
Author(s):  
Sylvia Herold ◽  
James C. Paton ◽  
Potjanee Srimanote ◽  
Adrienne W. Paton

Shiga-toxigenic Escherichia coli (STEC) colonizing the bowel are exposed to a variety of short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, produced by gut microflora. However, the total concentrations and relative amounts of SCFAs in the lumen vary with intestinal niche. Here we report that conditions simulating SCFA concentrations present in the human gut trigger expression of the iha gene, which encodes an adherence-conferring outer-membrane protein of pathogenic E. coli. We show that growth under conditions simulating colonic, but not ileal, SCFA concentrations increases iha expression in three tested STEC strains, with the strongest expression detected in LEE-negative STEC O113:H21 strain 98NK2. Expression of iha is known to be subject to Fur-mediated iron repression in O157:H7 STEC, and the same occurs in 98NK2. However, exogenous iron did not repress iha expression in the presence of colonic SCFAs in either 98NK2 or the O157:H7 strain EDL933. Moreover, exposure to the iron chelator 2,2′-dipyridyl caused no further enhancement of iha expression over that induced by colonic SCFAs. These findings indicate that SCFAs regulate iha expression in STEC independently of iron. Increased expression of iha under colonic but not ileal SCFA conditions possibly may contribute to preferential colonization of the human colon by STEC.

2008 ◽  
Vol 56 (13) ◽  
pp. 5415-5421 ◽  
Author(s):  
Uri Lesmes ◽  
Emma J. Beards ◽  
Glenn R. Gibson ◽  
Kieran M. Tuohy ◽  
Eyal Shimoni

2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


Gut ◽  
1981 ◽  
Vol 22 (9) ◽  
pp. 763-779 ◽  
Author(s):  
J H Cummings

Author(s):  
Fernanda Pace ◽  
Sara E. Rudolph ◽  
Ying Chen ◽  
Bin Bao ◽  
David L. Kaplan ◽  
...  

The human terminal ileum and colon are colonized by a community of microbes known as the microbiota. Short-chain fatty acids (SCFAs) excreted by bacterial members of the microbiota define the intestinal environment.


Microbiology ◽  
2014 ◽  
Vol 160 (7) ◽  
pp. 1513-1522 ◽  
Author(s):  
Alexandra R. Volker ◽  
David S. Gogerty ◽  
Christian Bartholomay ◽  
Tracie Hennen-Bierwagen ◽  
Huilin Zhu ◽  
...  

Escherichia coli was engineered for the production of even- and odd-chain fatty acids (FAs) by fermentation. Co-production of thiolase, hydroxybutyryl-CoA dehydrogenase, crotonase and trans-enoyl-CoA reductase from a synthetic operon allowed the production of butyrate, hexanoate and octanoate. Elimination of native fermentation pathways by genetic deletion (ΔldhA, ΔadhE, ΔackA, Δpta, ΔfrdC) helped eliminate undesired by-products and increase product yields. Initial butyrate production rates were high (0.7 g l−1 h−1) but quickly levelled off and further study suggested this was due to product toxicity and/or acidification of the growth medium. Results also showed that endogenous thioesterases significantly influenced product formation. In particular, deletion of the yciA thioesterase gene substantially increased hexanoate production while decreasing the production of butyrate. E. coli was also engineered to co-produce enzymes for even-chain FA production (described above) together with a coenzyme B12-dependent pathway for the production of propionyl-CoA, which allowed the production of odd-chain FAs (pentanoate and heptanoate). The B12-dependent pathway used here has the potential to allow the production of odd-chain FAs from a single growth substrate (glucose) in a more energy-efficient manner than the prior methods.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 462
Author(s):  
Shiying Zhang ◽  
Belgin Dogan ◽  
Cindy Guo ◽  
Deepali Herlekar ◽  
Katrina Stewart ◽  
...  

Short chain fatty acids (SCFA), principally acetate, propionate, and butyrate, are produced by fermentation of dietary fibers by the gut microbiota. SCFA regulate the growth and virulence of enteric pathogens, such as enterohemorrhagic E. coli (EHEC), Klebsiella and Salmonella. We sought to investigate the impact of SCFA on growth and virulence of pathosymbiont E. coli associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC), and their role in regulating host responses to bacterial infection in vitro. We found that under ileal conditions (pH = 7.4; 12 mM total SCFA), SCFA significantly (p < 0.05) potentiate the growth and motility of pathosymbiont E. coli. However, under colonic conditions (pH = 6.5; 65 to 123 mM total SCFA), SCFA significantly (p < 0.05) inhibit growth in a pH dependent fashion (up to 60%), and down-regulate virulence gene expression (e.g., fliC, fimH, htrA, chuA, pks). Functional analysis reveals that colonic SCFA significantly (p < 0.05) inhibit E. coli motility (up to 95%), infectivity (up to 60%), and type 1 fimbria-mediated agglutination (up to 50%). In addition, SCFA significantly (p < 0.05) inhibit the activation of NF-kB, and IL-8 production by epithelial cells. Our findings provide novel insights on the role of the regional chemical microenvironment in regulating the growth and virulence of pathosymbiont E. coli and opportunities for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document