scholarly journals Refinement of the Listeria monocytogenes σB regulon through quantitative proteomic analysis

Microbiology ◽  
2013 ◽  
Vol 159 (Pt_6) ◽  
pp. 1109-1119 ◽  
Author(s):  
S. Mujahid ◽  
R. H. Orsi ◽  
P. Vangay ◽  
K. J. Boor ◽  
M. Wiedmann
2020 ◽  
Author(s):  
Jie Huang ◽  
Cong Zhou ◽  
Guanghong Zhou ◽  
Keping Ye

AbstractListeria monocytogenes (Lm) is an opportunistic food-borne pathogen that cause listeriosis. L. monocytogenes belonged to different serovars presents with different virulence in the host and caused different host reactions. To investigate the remodeling of host proteome by differently toxic strains, the cellular protein responses of intestinal organoids were analyzed using TMT labeling and high performance liquid chromatography-mass spectrometry. Quantitative proteomic analysis revealed 6564 differentially expressed proteins, of which 5591 proteins were quantified. The fold-change cutoff was set at 1.3 (Lm vs control), the virulent strain caused 102 up-regulated proteins and 52 down-regulated proteins, while the low virulent strain caused 188 up-regulated proteins and 25 down-regulated proteins. These identified proteins were involved in the regulation of essential processes such as biological metabolism, energy metabolism, and immune system process. Some selected proteins were screened by Real-time PCR and Western blotting. These results revealed that differently toxic L. monocytogenes induced similar biological functions and immune responses while had different regulation on differential proteins in the pathway.


2021 ◽  
Vol 135 ◽  
pp. 204-216
Author(s):  
Dingding Lü ◽  
Ping Xu ◽  
Chengxiang Hou ◽  
Ruilin Li ◽  
Congwu Hu ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Sign in / Sign up

Export Citation Format

Share Document