scholarly journals The influence of ribosome modulation factor on the survival of stationary-phase Escherichia coli during acid stress

Microbiology ◽  
2007 ◽  
Vol 153 (1) ◽  
pp. 247-253 ◽  
Author(s):  
Walid M. El-Sharoud ◽  
Gordon W. Niven
2000 ◽  
Vol 66 (9) ◽  
pp. 3911-3916 ◽  
Author(s):  
Sang Ho Choi ◽  
David J. Baumler ◽  
Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.


2005 ◽  
Vol 187 (6) ◽  
pp. 1951-1958 ◽  
Author(s):  
Toshiko Aiso ◽  
Hideji Yoshida ◽  
Akira Wada ◽  
Reiko Ohki

ABSTRACT The expression of ribosome modulation factor (RMF) is induced during stationary phase in Escherichia coli. RMF participates in the dimerization of 70S ribosomes to form the 100S ribosome, which is the translationally inactive form of the ribosome. To elucidate the involvement of the control of mRNA stability in growth-phase-specific rmf expression, we investigated rmf mRNA stability in stationary-phase cells and cells inoculated into fresh medium. The rmf mRNA was found to have an extremely long half-life during stationary phase, whereas destabilization of this mRNA took place after the culture was inoculated into fresh medium. RMF and 100S ribosomes disappeared from cells 1 min after inoculation. In addition to control by ppGpp-dependent transcription, these results indicate that the modulation of rmf mRNA stability is also involved in the regulation of growth-phase-specific rmf expression. Unexpectedly, the postinoculation degradation of rmf mRNA was suppressed by the addition of rifampin, suggesting that de novo RNA synthesis is necessary for degradation. This degradation was also suppressed in both a poly(A) polymerase-deficient and an rne-131 mutant strain. We cloned and sequenced the 3′-proximal regions of rmf mRNAs and found that most of these 3′ ends terminated at the ρ-independent terminator with the addition of a one- to five-A oligo(A) tail in either stationary-phase or inoculated cells. No difference was observed in the length of the poly(A) tail between stationary-phase and inoculated cells. These results suggest that a certain postinoculation-specific regulatory factor participates in the destabilization of rmf mRNA and is dependent on polyadenylation.


2002 ◽  
Vol 132 (6) ◽  
pp. 983-989 ◽  
Author(s):  
H. Yoshida ◽  
Y. Maki ◽  
H. Kato ◽  
H. Fujisawa ◽  
K. Izutsu ◽  
...  

1999 ◽  
Vol 264 (3) ◽  
pp. 643-647 ◽  
Author(s):  
Auayporn Apirakaramwong ◽  
Keiko Kashiwagi ◽  
V.Samuel Raj ◽  
Kaori Sakata ◽  
Yoshimi Kakinuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document