scholarly journals Contribution of dps to Acid Stress Tolerance and Oxidative Stress Tolerance in Escherichia coli O157:H7

2000 ◽  
Vol 66 (9) ◽  
pp. 3911-3916 ◽  
Author(s):  
Sang Ho Choi ◽  
David J. Baumler ◽  
Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 805-812 ◽  
Author(s):  
Bradley L. Bearson ◽  
In Soo Lee ◽  
Thomas A. Casey

Micro-organisms may simultaneously encounter multiple stresses in their environment. To investigate the protection that several known Escherichia coli O157 : H7 acid-resistance systems might provide against both oxidative and acid stress, the addition of diamide, a membrane-permeable thiol-specific oxidizing agent, or hydrogen peroxide were used concurrent with acid challenge at pH 2.5 to determine bacterial survival. The addition of either diamide or hydrogen peroxide decreased bacterial survival in a dose-dependent manner for E. coli O157 : H7 during challenge at pH 2.5 following overnight growth in LB MES pH 5.5 (acid-resistance system 1, AR1). In contrast, the presence of either glutamate or arginine during challenge provided significant protection against diamide- and hydrogen peroxide-induced oxidative stress during pH 2.5 acid challenge. Oxidative stress protection during acid challenge required gadC and adiA for the glutamate- (AR2) and arginine- (AR3) dependent acid-resistance systems, respectively. In addition, maximal protection against oxidative stress in the presence of glutamate required a low external pH (pH 2.5), since pH 5.5 did not protect. This study demonstrates that the glutamate- and arginine-dependent acid-resistance systems of E. coli O157 : H7 can simultaneously protect against oxidative stress during extreme acid challenge.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


2004 ◽  
Vol 67 (7) ◽  
pp. 1328-1334 ◽  
Author(s):  
P. S. MARIE YEUNG ◽  
KATHRYN J. BOOR

For several foodborne bacterial pathogens, an acid tolerance response appears to be an important strategy for counteracting acid stress imposed either during food processing or by the human host. The acid tolerance response enhances bacterial survival of lethal acid challenge following prior exposure to sublethal acidic conditions. Previous studies have revealed relationships between a foodborne pathogen's ability to survive acid challenge and its infectious dose. Vibrio parahaemolyticus is capable of causing gastroenteritis when sufficient cells of pathogenic strains are consumed. This study was designed to characterize acid sensitivities and to compare the effects of sublethal acid exposure (adaptation) on survival capabilities and cytotoxicities of different V. parahaemolyticus strains. Survival of acid challenge by stationary-phase cells differed by up to 3 log CFU/ml among the 25 isolates tested. No differences in acid resistance were found between strains when they were grouped by source (clinical isolates versus those obtained from food). Survival at pH 3.6 for log-phase cells that had been previously exposed to sublethal acidic conditions (pH 5.5) was enhanced compared with that for cells not previously exposed to pH 5.5. However, for stationary-phase cells, exposure to pH 5.5 impaired both subsequent survival at pH 3.6 and cytotoxicity to human epithelial cells. Relative cytotoxicities of nonadapted stationary-phase cells were 1.2- to 4.8-fold higher than those of adapted cells. Sublethal acid exposure appears to impose measurable growth phase–dependent effects on subsequent lethal acid challenge survival and cytotoxicity of V. parahaemolyticus.


2008 ◽  
Vol 190 (20) ◽  
pp. 6909-6912 ◽  
Author(s):  
Jai J. Tree ◽  
Glen C. Ulett ◽  
Cheryl-Lynn Y. Ong ◽  
Darren J. Trott ◽  
Alastair G. McEwan ◽  
...  

ABSTRACT The periplasmic multicopper oxidase (CueO) is involved in copper homeostasis and protection against oxidative stress. Here, we show that the deletion of cueO in uropathogenic Escherichia coli increases its colonization of the urinary tract despite its increased sensitivity to hydrogen peroxide. The cueO deletion mutant accumulated iron with increased efficiency compared to its parent strain; this may account for its advantage in the iron-limited environment of the urinary tract.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2015 ◽  
Vol 6 ◽  
Author(s):  
Mohammad A. Hossain ◽  
Soumen Bhattacharjee ◽  
Saed-Moucheshi Armin ◽  
Pingping Qian ◽  
Wang Xin ◽  
...  

2009 ◽  
Vol 483 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Lici A. Schurig-Briccio ◽  
Ricardo N. Farías ◽  
Luisa Rodríguez-Montelongo ◽  
María R. Rintoul ◽  
Viviana A. Rapisarda

2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Qingqing Gao ◽  
Le Xia ◽  
Xiaobo Wang ◽  
Zhengqin Ye ◽  
Jinbiao Liu ◽  
...  

ABSTRACTStrains of avian pathogenicEscherichia coli(APEC), the common pathogen of avian colibacillosis, encounter reactive oxygen species (ROS) during the infection process. Superoxide dismutases (SODs), acting as antioxidant factors, can protect against ROS-mediated host defenses. Our previous reports showed that thesodAgene (encoding a Mn-cofactor-containing SOD [MnSOD]) is highly expressed during the septicemic infection process of APEC.sodAhas been proven to be a virulence factor of certain pathogens, but its role in the pathogenicity of APEC has not been fully identified. In this study, we deleted thesodAgene from the virulent APEC O2 strain E058 and examined thein vitroandin vivophenotypes of the mutant. ThesodAmutant was more sensitive to hydrogen peroxide in terms of both its growth and viability than was the wild type. The ability to form a biofilm was weakened in thesodAmutant. ThesodAmutant was significantly more easily phagocytosed by chicken macrophages than was the wild-type strain. Chicken infection assays revealed significantly attenuated virulence of thesodAmutant compared with the wild type at 24 h postinfection. The virulence phenotype was restored by complementation of thesodAgene. Quantitative real-time reverse transcription-PCR revealed that the inactivation ofsodAreduced the expression of oxidative stress response geneskatE,perR, andosmCbut did not affect the expression ofsodBandsodC. Taken together, our studies indicate that SodA is important for oxidative resistance and virulence of APEC E058.IMPORTANCEAvian colibacillosis, caused by strains of avian pathogenicEscherichia coli, is a major bacterial disease of severe economic significance to the poultry industry worldwide. The virulence mechanisms of APEC are not completely understood. This study investigated the influence of an antioxidant protein, SodA, on the phenotype and pathogenicity of APEC O2 strain E058. This is the first report demonstrating that SodA plays an important role in protecting a specific APEC strain against hydrogen peroxide-induced oxidative stress and contributes to the virulence of this pathotype strain. Identification of this virulence factor will enhance our knowledge of APEC pathogenic mechanisms, which is crucial for designing successful strategies against associated infections and transmission.


Sign in / Sign up

Export Citation Format

Share Document