scholarly journals Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia

Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2585-2596 ◽  
Author(s):  
Joshua T. Herbeck ◽  
Dennis P. Wall ◽  
Jennifer J. Wernegreen

Wigglesworthia glossinidia brevipalpis, the obligate bacterial endosymbiont of the tsetse fly Glossina brevipalpis, is characterized by extreme genome reduction and AT nucleotide composition bias. Here, multivariate statistical analyses are used to test the hypothesis that mutational bias and genetic drift shape synonymous codon usage and amino acid usage of Wigglesworthia. The results show that synonymous codon usage patterns vary little across the genome and do not distinguish genes of putative high and low expression levels, thus indicating a lack of translational selection. Extreme AT composition bias across the genome also drives relative amino acid usage, but predicted high-expression genes (ribosomal proteins and chaperonins) use GC-rich amino acids more frequently than do low-expression genes. The levels and configuration of amino acid differences between Wigglesworthia and Escherichia coli were compared to test the hypothesis that the relatively GC-rich amino acid profiles of high-expression genes reflect greater amino acid conservation at these loci. This hypothesis is supported by reduced levels of protein divergence at predicted high-expression Wigglesworthia genes and similar configurations of amino acid changes across expression categories. Combined, the results suggest that codon and amino acid usage in the Wigglesworthia genome reflect a strong AT mutational bias and elevated levels of genetic drift, consistent with expected effects of an endosymbiotic lifestyle and repeated population bottlenecks. However, these impacts of mutation and drift are apparently attenuated by selection on amino acid composition at high-expression genes.

2018 ◽  
Vol 19 (12) ◽  
pp. 4010
Author(s):  
Zhaocai Li ◽  
Wen Hu ◽  
Xiaoan Cao ◽  
Ping Liu ◽  
Youjun Shang ◽  
...  

The family of Chlamydiaceae contains a group of obligate intracellular bacteria that can infect a wide range of hosts. The evolutionary trend of members in this family is a hot topic, which benefits our understanding of the cross-infection of these pathogens. In this study, 14 whole genomes of 12 Chlamydia species were used to investigate the nucleotide, codon, and amino acid usage bias by synonymous codon usage value and information entropy method. The results showed that all the studied Chlamydia spp. had A/T rich genes with over-represented A or T at the third positions and G or C under-represented at these positions, suggesting that nucleotide usages influenced synonymous codon usages. The overall codon usage trend from synonymous codon usage variations divides the Chlamydia spp. into four separate clusters, while amino acid usage divides the Chlamydia spp. into two clusters with some exceptions, which reflected the genetic diversity of the Chlamydiaceae family members. The overall codon usage pattern represented by the effective number of codons (ENC) was significantly positively correlated to gene GC3 content. A negative correlation exists between ENC and the codon adaptation index for some Chlamydia species. These results suggested that mutation pressure caused by nucleotide composition constraint played an important role in shaping synonymous codon usage patterns. Furthermore, codon usage of T3ss and Pmps gene families adapted to that of the corresponding genome. Taken together, analyses help our understanding of evolutionary interactions between nucleotide, synonymous codon, and amino acid usages in genes of Chlamydiaceae family members.


2019 ◽  
Author(s):  
Abigail L. Labella ◽  
Dana A. Opulente ◽  
Jacob L. Steenwyk ◽  
Chris Todd Hittinger ◽  
Antonis Rokas

AbstractVariation in synonymous codon usage is abundant across multiple levels of organization: between codons of an amino acid, between genes in a genome, and between genomes of different species. It is now well understood that variation in synonymous codon usage is influenced by mutational bias coupled with both natural selection for translational efficiency and genetic drift, but how these processes shape patterns of codon usage bias across entire lineages remains unexplored. To address this question, we used a rich genomic data set of 327 species that covers nearly one third of the known biodiversity of the budding yeast subphylum Saccharomycotina. We found that, while genome-wide relative synonymous codon usage (RSCU) for all codons was highly correlated with the GC content of the third codon position (GC3), the usage of codons for the amino acids proline, arginine, and glycine was inconsistent with the neutral expectation where mutational bias coupled with genetic drift drive codon usage. Examination between genes’ effective numbers of codons and their GC3 contents in individual genomes revealed that nearly a quarter of genes (381,174/1,683,203; 23%), as well as most genomes (308/327; 94%), significantly deviate from the neutral expectation. Finally, by evaluating the imprint of translational selection on codon usage, measured as the degree to which genes’ adaptiveness to the tRNA pool were correlated with selective pressure, we show that translational selection is widespread in budding yeast genomes (264/327; 81%). These results suggest that the contribution of translational selection and drift to patterns of synonymous codon usage across budding yeasts varies across codons, genes, and genomes; whereas drift is the primary driver of global codon usage across the subphylum, the codon bias of large numbers of genes in the majority of genomes is influenced by translational selection.Lay Summary / Significance statementSynonymous mutations in genes have no effect on the encoded proteins and were once thought to be evolutionarily neutral. By examining codon usage bias across codons, genes, and genomes of 327 species in the budding yeast subphylum, we show that synonymous codon usage is shaped by both neutral processes and selection for translational efficiency. Specifically, whereas codon usage bias for most codons appears to be strongly associated with mutational bias and largely driven by genetic drift across the entire subphylum, patterns of codon usage bias in a few codons, as well as in many genes in nearly all genomes of budding yeasts, deviate from neutral expectations. Rather, the synonymous codons used within genes in most budding yeast genomes are adapted to the tRNAs present within each genome, a result most likely due to translational selection that optimizes codons to match the tRNAs. Our results suggest that patterns of codon usage bias in budding yeasts, and perhaps more broadly in fungi and other microbial eukaryotes, are shaped by both neutral and selective processes.


2012 ◽  
Vol 60 (5) ◽  
pp. 461 ◽  
Author(s):  
Yuerong Zhang ◽  
Xiaojun Nie ◽  
Xiaoou Jia ◽  
Cunzhen Zhao ◽  
Siddanagouda S. Biradar ◽  
...  

Codon usage patterns of 23 Poaceae chloroplast genomes were analysed in this study. Neutrality analysis indicated that the codon usage patterns have significant correlations with GC12 and GC3 and also showed strong bias towards a high representation of NNA and NNT codons. The Nc-plot showed that although a large proportion of points follow the parabolic line of trajectory, several genes with low ENc values lie below the expected curve, suggesting that mutational bias played a major role in the codon biology of the Poaceae chloroplast genome. Parity Rule 2 plot analysis showed that T was used more frequently than A in all the genomes. Correspondence analysis of relative synonymous codon usage indicated that the first axis explained only a partial amount of variation of codon usage. Furthermore, the gene length and expression level were also found to drive codon usage variation. These findings revealed that besides natural selection, other factors might also exert some influences in shaping the codon usage bias in Poaceae chloroplast genomes. The optimal codons of these 23 genomes were also identified in this study.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tapan Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdul Latif Khan ◽  
...  

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 plant species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas GCG anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons (isoacceptor) at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and we found that tRNASec showed anti-codon switch during the course of evolution. Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.


2020 ◽  
Author(s):  
Tapan Kumar Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Ahmed Al-Harrasi

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas CGC anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and it has undergone anti-codon switch during the course of evolution. Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Redi Aditama ◽  
Zulfikar Achmad Tanjung ◽  
Widyartini Made Sudania ◽  
Yogo Adhi Nugroho ◽  
Condro Utomo ◽  
...  

Abstract. Aditama R, Tanjung ZA, Sudania WM, Nugroho YA, Utomo C, Liwang T. 2020. Analysis of codon usage bias reveals optimal codons in Elaeis guineensis. Biodiversitas 21: 5331-5337. Codon usage bias of oil palm genome was reported employing several indices, including GC content, relative synonymous codon usage (RSCU), the effective number of codons (ENC), and codon adaptation index (CAI). Unimodal distribution of GC content was observed and matched with non-grass monocots characteristics. Correspondence analysis (COA) on synonymous codon usage bias showed that the main axis was strongly driven by GC content. The ENC and neutrality plot of oil palm genes indicating that natural selection played more vital role compared to mutational bias on shaping codon usage bias. A positive correlation between calculated CAI and experimental data of oil palm gene expression was detected indicating good ability of this index. Finally, eighteen codons were defined as “optimal codons” that may provide a useful reference for heterogeneous expression and genome editing studies.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3037 ◽  
Author(s):  
Wei Qing Kong ◽  
Jin Hong Yang

Trees in the Morus genera belong to the Moraceae family. To better understand the species status of genus Morus and to provide information for studies on evolutionary biology within the genus, the complete chloroplast (cp) genomes of M. cathayana and M. multicaulis were sequenced. The plastomes of the two species are 159,265 bp and 159,103 bp, respectively, with corresponding 83 and 82 simple sequence repeats (SSRs). Similar to the SSRs of M. mongolica and M. indica cp genomes, more than 70% are mononucleotides, ten are in coding regions, and one exhibits nucleotide content polymorphism. Results for codon usage and relative synonymous codon usage show a strong bias towards NNA and NNT codons in the two cp genomes. Analysis of a plot of the effective number of codons (ENc) for five Morus spp. cp genomes showed that most genes follow the standard curve, but several genes have ENc values below the expected curve. The results indicate that both natural selection and mutational bias have contributed to the codon bias. Ten highly variable regions were identified among the five Morus spp. cp genomes, and 154 single-nucleotide polymorphism mutation events were accurately located in the gene coding region.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 927-935 ◽  
Author(s):  
H Akashi

Abstract I present evidence that natural selection biases synonymous codon usage to enhance the accuracy of protein synthesis in Drosophila melanogaster. Since the fitness cost of a translational misincorporation will depend on how the amino acid substitution affects protein function, selection for translational accuracy predicts an association between codon usage in DNA and functional constraint at the protein level. The frequency of preferred codons is significantly higher at codons conserved for amino acids than at nonconserved codons in 38 genes compared between D. melanogaster and Drosophila virilis or Drosophila pseudoobscura (Z = 5.93, P < 10(-6)). Preferred codon usage is also significantly higher in putative zinc-finger and homeodomain regions than in the rest of 28 D. melanogaster transcription factor encoding genes (Z = 8.38, P < 10(-6)). Mutational alternatives (within-gene differences in mutation rates, amino acid changes altering codon preference states, and doublet mutations at adjacent bases) do not appear to explain this association between synonymous codon usage and amino acid constraint.


Sign in / Sign up

Export Citation Format

Share Document