scholarly journals Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2

2013 ◽  
Vol 94 (12) ◽  
pp. 2700-2709 ◽  
Author(s):  
Xiao-Feng Li ◽  
Wei Zhao ◽  
Fang Lin ◽  
Qing Ye ◽  
Hong-Jiang Wang ◽  
...  

Mosquito-borne flaviviruses include a large group of important human medical pathogens. Several chimaeric flaviviruses have been constructed, and show potential for vaccine development. Although Japanese encephalitis virus (JEV) live vaccine SA14-14-2 has been widely used with ideal safety and efficacy profiles, no chimaeric flavivirus based on the JEV vaccine has been described to date. Based on the reverse genetic system of the JEV vaccine SA14-14-2, a novel live chimaeric flavivirus carrying the protective antigens of West Nile virus (WNV) was constructed and recovered in this study. The resulting chimaera (ChinWNV) replicated efficiently in both mammalian and mosquito cells and possessed genetic stability after in vitro serial passaging. ChinWNV exhibited a small-plaque phenotype, and its replication was significantly restricted in mouse peripheral blood and brain compared with parental WNV. Importantly, ChinWNV was highly attenuated with regard to both neurovirulence and neuroinvasiveness in mice. Furthermore, a single ChinWNV immunization stimulated robust WNV-specific adaptive immune responses in mice, conferring significant protection against lethal WNV infection. Our results demonstrate that chimaeric flaviviruses based on the JEV vaccine can serve as a powerful platform for vaccine development, and that ChinWNV represents a potential WNV vaccine candidate that merits further development.

Vaccine ◽  
2003 ◽  
Vol 21 (31) ◽  
pp. 4514-4518 ◽  
Author(s):  
Tomohiko Takasaki ◽  
Sadao Yabe ◽  
Reiko Nerome ◽  
Mikako Ito ◽  
Ken-Ichiro Yamada ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2352
Author(s):  
Rebecca Salgado ◽  
Seth A. Hawks ◽  
Francesca Frere ◽  
Ana Vázquez ◽  
Claire Y.-H. Huang ◽  
...  

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1−/− mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1−/− model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1073
Author(s):  
Juan-Carlos Saiz

West Nile virus (WNV) is a widely distributed enveloped flavivirus transmitted by mosquitoes, which main hosts are birds. The virus sporadically infects equids and humans with serious economic and health consequences, as infected individuals can develop a severe neuroinvasive disease that can even lead to death. Nowadays, no WNV-specific therapy is available and vaccines are only licensed for use in horses but not for humans. While several methodologies for WNV vaccine development have been successfully applied and have contributed to significantly reducing its incidence in horses in the US, none have progressed to phase III clinical trials in humans. This review addresses the status of WNV vaccines for horses, birds, and humans, summarizing and discussing the challenges they face for their clinical advance and their introduction to the market.


Sign in / Sign up

Export Citation Format

Share Document