scholarly journals Induction of apoptosis in an insect cell line, IPLB-Ld652Y, infected with nucleopolyhedroviruses

2003 ◽  
Vol 84 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Hiroki Ishikawa ◽  
Motoko Ikeda ◽  
Kenichi Yanagimoto ◽  
Cristiano A. Felipe Alves ◽  
Yasuhiro Katou ◽  
...  

Ld652Y cells derived from the gypsy moth, Lymantria dispar, were infected with seven different nucleopolyhedroviruses (NPVs) including those from Autographa californica, Bombyx mori (BmNPV), Hyphantria cunea (HycuNPV), Spodoptera exigua (SeMNPV), L. dispar, Orgyia pseudotsugata (OpMNPV) and Spodoptera litura (SpltMNPV). The results showed that Ld652Y cells infected with BmNPV, HycuNPV, SeMNPV, OpMNPV and SpltMNPV underwent apoptosis, displaying apoptotic bodies, characteristic DNA fragmentation and increased caspase-3-like protease activity; HycuNPV induced the most severe apoptosis. In HycuNPV-infected Ld652Y cells, a considerable amount of viral DNA was synthesized although there was no detectable yield of budded virions and polyhedrin. Northern blot and immunoblot analyses revealed that HycuNPV inhibitor of apoptosis 3 (IAP3), which has been shown to function in Sf9 cells, was expressed in HycuNPV-infected Ld652Y cells at a level higher than or comparable with that in HycuNPV-infected SpIm cells, which produced a high titre of progeny virions without any apoptotic response. These results imply that the relative ease of apoptosis induction in NPV-infected Ld652Y cells is largely dependent on inherent cellular properties rather than functions of the respective NPVs, and indicate that the defect in progeny virion production is not merely due to the virus-induced apoptosis in HycuNPV-infected Ld652Y cells.

2011 ◽  
Vol 92 (11) ◽  
pp. 2654-2663 ◽  
Author(s):  
Motoko Ikeda ◽  
Hayato Yamada ◽  
Hiroyuki Ito ◽  
Michihiro Kobayashi

Baculoviruses encode inhibitors of apoptosis (IAPs), which are classified into five groups, IAP1–5, based on their sequence homology. Most of the baculovirus IAPs with anti-apoptotic functions belong to the IAP3 group, with certain exceptions. The functional roles of IAPs from other groups during virus infection have not been well established. We have previously shown that Hyphantria cunea multiple nucleopolyhedrovirus (HycuMNPV) encodes three iap genes, hycu-iap1, hycu-iap2 and hycu-iap3, and that only Hycu-IAP3 has anti-apoptotic activity against actinomycin D-induced apoptosis of Spodoptera frugiperda Sf9 cells. In the present study, we demonstrate that transient expression of Hycu-IAP1 is capable of inducing apoptosis and/or stimulating caspase-3-like protease activity in various lepidopteran and dipteran cell lines. Transient-expression assay analysis also demonstrates that not only Hycu-IAP1 but also IAP1s from Autographa californica MNPV, Bombyx mori NPV and Orgyia pseudotsugata MNPV (OpMNPV) are capable of inducing apoptosis, and that apoptosis induced by Hycu-IAP1 is precluded by the functional anti-apoptotic baculovirus protein Hycu-IAP3. In HycuMNPV-infected Spilosoma imparilis (SpIm) cells and OpMNPV-infected Ld652Y cells, caspase-3-like protease activity is markedly stimulated during the late stages of infection, and the caspase-3-like protease activity stimulated in HycuMNPV-infected SpIm cells is repressed by RNA interference-mediated silencing of hycu-iap1. In addition, initiator caspase Bm-Dronc, the B. mori homologue of Dronc, is cleaved upon transfection of BM-N cells with a plasmid expressing Hycu-IAP1. These results provide the first evidence that baculovirus IAP1s act to induce caspase-dependent apoptosis, possibly by replacing the cellular IAP1 that prevents Dronc activation.


2013 ◽  
Vol 94 (9) ◽  
pp. 2102-2111 ◽  
Author(s):  
Rina Hamajima ◽  
Yuya Ito ◽  
Haruka Ichikawa ◽  
Hiroshi Mitsutake ◽  
Jun Kobayashi ◽  
...  

Cell lines derived from the silkworm, Bombyx mori, are only permissive for B. mori nucleopolyhedrovirus (NPV), with other NPVs generally resulting in abortive infection. Here, we demonstrate that rRNA of B. mori BM-N cells undergoes rapid degradation through site-specific cleavage upon infection with NPVs from Autographa californica (AcMNPV), Hyphantria cunea (HycuMNPV), Spodoptera exigua (SeMNPV) and Spodoptera litura (SpltMNPV). No significant decreases in cellular RNA were observed in Ld652Y, Se301, Sf9, SpIm and S2 cells infected with AcMNPV or HycuMNPV, indicating the response is unique to BM-N cells. A transient expression assay using a cosmid library of the HycuMNPV genome demonstrated that HycuMNPV P143 is responsible for rRNA degradation, which was also detected in BM-N cells transfected with plasmids expressing the P143 proteins from AcMNPV, SeMNPV and SpltMNPV. These results indicate that B. mori evolved to acquire a unique antiviral immune mechanism that is activated by P143 proteins from heterologous NPVs.


1999 ◽  
Vol 19 (4) ◽  
pp. 2986-2997 ◽  
Author(s):  
YinYin Huang ◽  
Shuji Nakada ◽  
Takatoshi Ishiko ◽  
Taiju Utsugisawa ◽  
Rakesh Datta ◽  
...  

ABSTRACT We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage.


1999 ◽  
Vol 80 (12) ◽  
pp. 3289-3304 ◽  
Author(s):  
Wilfred F. J. IJkel ◽  
Elisabeth A. van Strien ◽  
Jacobus G. M. Heldens ◽  
René Broer ◽  
Douwe Zuidema ◽  
...  

The nucleotide sequence of the DNA genome of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV), a group II NPV, was determined and analysed. The genome contains 135611 bp and has a G+C content of 44 mol%. Computer-assisted analysis revealed 139 ORFs of 150 nucleotides or larger; 103 have homologues in Autographa californica MNPV (AcMNPV) and a further 16 have homologues in other baculoviruses. Twenty ORFs are unique to SeMNPV. Major differences in SeMNPV gene content and arrangement were found compared with the group I NPVs AcMNPV, Bombyx mori (Bm) NPV and Orgyia pseudotsugata (Op) MNPV and the group II NPV Lymantria dispar (Ld) MNPV. Eighty-five ORFs were conserved among all five baculoviruses and are considered as candidate core baculovirus genes. Two putative p26 and odv-e66 homologues were identified in SeMNPV, each of which appeared to have been acquired independently and not by gene duplication. The SeMNPV genome lacks homologues of the major budded virus glycoprotein gene gp64, the immediate-early transactivator ie-2 and bro (baculovirus repeat ORF) genes that are found in AcMNPV, BmNPV, OpMNPV and LdMNPV. Gene parity analysis of baculovirus genomes suggests that SeMNPV and LdMNPV have a recent common ancestor and that they are more distantly related to the group I baculoviruses AcMNPV, BmNPV and OpMNPV. The orientation of the SeMNPV genome is reversed compared with the genomes of AcMNPV, BmNPV, OpMNPV and LdMNPV. However, the gene order in the ‘central’ part of baculovirus genomes is highly conserved and appears to be a key feature in the alignment of baculovirus genomes.


2004 ◽  
Vol 78 (22) ◽  
pp. 12703-12708 ◽  
Author(s):  
Hiroki Ishikawa ◽  
Motoko Ikeda ◽  
Cristiano A. Felipe Alves ◽  
Suzanne M. Thiem ◽  
Michihiro Kobayashi

ABSTRACT Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3379-3386 ◽  
Author(s):  
Dharminder Chauhan ◽  
Guilan Li ◽  
Teru Hideshima ◽  
Klaus Podar ◽  
Constantine Mitsiades ◽  
...  

AbstractSmac, second mitochondria-derived activator of caspases, promotes apoptosis via activation of caspases. Heat shock protein 27 (Hsp27) negatively regulates another mitochondrial protein, cytochrome c, during apoptosis; however, the role of Hsp27 in modulating Smac release is unknown. Here we show that Hsp27 is overexpressed in both dexamethasone (Dex)-resistant multiple myeloma (MM) cell lines (MM.1R, U266, RPMI-8226) and primary patient cells. Blocking Hsp27 by an antisense (AS) strategy restores the apoptotic response to Dex in Dex-resistant MM cells by triggering the release of mitochondrial protein Smac, followed by activation of caspase-9 and caspase-3. Moreover, AS-Hsp27 overcomes interleukin-6 (IL-6)-mediated protection against Dex-induced apoptosis. These data demonstrate that Hsp27 inhibits the release of Smac, and thereby confers Dex resistance in MM cells.


1998 ◽  
Vol 18 (4) ◽  
pp. 2416-2429 ◽  
Author(s):  
Christian Widmann ◽  
Pär Gerwins ◽  
Nancy Lassignal Johnson ◽  
Matthew B. Jarpe ◽  
Gary L. Johnson

ABSTRACT MEK kinase 1 (MEKK1) is a 196-kDa protein that, in response to genotoxic agents, was found to undergo phosphorylation-dependent activation. The expression of kinase-inactive MEKK1 inhibited genotoxin-induced apoptosis. Following activation by genotoxins, MEKK1 was cleaved in a caspase-dependent manner into an active 91-kDa kinase fragment. Expression of MEKK1 stimulated DEVD-directed caspase activity and induced apoptosis. MEKK1 is itself a substrate for CPP32 (caspase-3). A mutant MEKK1 that is resistant to caspase cleavage was impaired in its ability to induce apoptosis. These findings demonstrate that MEKK1 contributes to the apoptotic response to genotoxins. The regulation of MEKK1 by genotoxins involves its activation, which may be part of survival pathways, followed by its cleavage, which generates a proapoptotic kinase fragment able to activate caspases. MEKK1 and caspases are predicted to be part of an amplification loop to increase caspase activity during apoptosis.


2019 ◽  
Vol 19 (4) ◽  
pp. 439-452 ◽  
Author(s):  
Mohamed R. Selim ◽  
Medhat A. Zahran ◽  
Amany Belal ◽  
Moustafa S. Abusaif ◽  
Said A. Shedid ◽  
...  

Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.


Sign in / Sign up

Export Citation Format

Share Document