scholarly journals New insights into internal ribosome entry site elements relevant for viral gene expression

2008 ◽  
Vol 89 (3) ◽  
pp. 611-626 ◽  
Author(s):  
Encarnación Martínez-Salas ◽  
Almudena Pacheco ◽  
Paula Serrano ◽  
Noemi Fernandez

A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family Picornaviridae initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5′ UTR. IRES elements consist of cis-acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA–RNA contacts between the 5′ and 3′ ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 147
Author(s):  
Shuo Zhang ◽  
Harish N. Ramanathan ◽  
Florian Douam ◽  
Katrina B. Mar ◽  
Jinhong Chang ◽  
...  

Flaviviruses are enveloped, arthropod-borne, positive-strand RNA viruses that cause significant human disease. While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We recently developed a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter to quantitively monitor the translation of incoming virus particle-delivered genomes. We validated that viral gene expression can be neutralized by YFV-specific antisera and requires known pathways of flavivirus entry; however, as expected, gene expression from the defective reporter virus was insensitive to a small molecule inhibitor of YFV RNA replication. The initial round of viral gene expression was also shown to require: (i) cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur, and (ii) valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large macromolecular complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.


2021 ◽  
Author(s):  
Beatriz Alvarado-Hernandez ◽  
Yanping Ma ◽  
Nishi R. Sharma ◽  
Vladimir Majerciak ◽  
Alexei Lobanov ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding post-transcriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57-CLIP (Cross-linking Immunoprecipitation) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIPed RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host non-coding and protein-coding mRNAs. We found ORF57 binds and regulates expression of a subset of host lncRNAs, including LINC00324, LINC00355, and LINC00839 which are involved in cell growth. ORF57 binds snoRNAs responsible for 18S and 28S rRNA modifications, but does not interact with fibrillarin and NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57-RNA immunoprecipitation (RIP)-snoRNA-array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap with the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57-RIP and Northern blot analyses using a 32 P-labeled oligo probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligos from the rRNA regions that ORF57 binds for oligo pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and its association with polysomes increases PABPC1 binding to, but prevent Ago2 from polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. Significance As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus infected cells. In this report, ORF57 was found to interact many host non-coding RNAs, including lncRNAs, snoRNAs and ribosomal RNAs to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the identified RNA motifs by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins, and with ribosomal RNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4, but not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC-1 but prevents Ago2 association with polysomes. Data provide a compelling evidence on how ORF57 in KSHV infected cells might regulate protein synthesis by blocking Ago2’s hostile activities on translation.


2002 ◽  
Vol 76 (3) ◽  
pp. 1144-1153 ◽  
Author(s):  
Dora Chin-Yen Koh ◽  
D. X. Liu ◽  
Sek-Man Wong

ABSTRACT RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3′ untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3′ UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3′ region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3′ UTR.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 134
Author(s):  
Mitchell P. Ledwith ◽  
Vy Tran ◽  
Thiprampai Thamamongood ◽  
Christina A. Higgins ◽  
Shashank Tripathi ◽  
...  

Hosts mount prudently tuned responses to viral infection in an attempt to block nearly every step of the replication cycle. Viruses must adapt to replicate in this hostile antiviral cellular state. Interferon stimulation or pathogen challenge robustly induces expression of IFIT (interferon-induced proteins with tetratricopeptide repeats) proteins. IFITs are a family of proteins that bind RNA and play antiviral roles during infection. Thus, we were surprised to identify the IFIT family as top candidate proviral host factors for influenza A virus (IAV) in a genome-wide CRISPR–Cas9 knockout screen. We validated the proviral activity of IFIT2 by showing that IFIT2-deficient cells support lower levels of IAV replication and exhibit defects in viral gene expression. The molecular functions of IFIT2, let alone how they are used by influenza virus, are unknown. Using CLIP-seq, we showed that IFIT2 binds directly to viral and cellular mRNAs in AU-rich regions largely in the 3’UTR, with a preference for a subset of interferon-stimulated mRNAs. IFIT2 also associates with actively translating ribosomes in infected cells to facilitate the translation of viral messages. IFIT2-responsive elements from an IAV mRNA were sufficient to confer translational enhancement to exogenous transcripts in cis. Conversely, mutation of these elements or the use of an IFIT2 RNA-binding mutant ablated stimulation of viral gene expression. Together, these data link the RNA-binding capability of IFIT2 to changes in translational efficiency of target viral mRNAs and the stimulation of viral replication. They establish a model for the normal function of IFIT2 as an antiviral protein affecting the post-transcriptional fate of cellular mRNAs and explain how influenza virus repurposes IFIT2 to support viral replication. Our work highlights a new node for the regulation of translation during interferon responses and highlights how canonical antiviral responses may be repurposed to support viral replication.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Ryan T. Behrens ◽  
Mounavya Aligeti ◽  
Ginger M. Pocock ◽  
Christina A. Higgins ◽  
Nathan M. Sherer

ABSTRACT HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.


2021 ◽  
Vol 118 (30) ◽  
pp. e2104805118
Author(s):  
Kalanghad Puthankalam Srinivas ◽  
Daniel P. Depledge ◽  
Jonathan S. Abebe ◽  
Stephen A. Rice ◽  
Ian Mohr ◽  
...  

N6-methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification, contributing to the processing, stability, and function of methylated RNAs. Methylation occurs in the nucleus during pre-mRNA synthesis and requires a core methyltransferase complex consisting of METTL3, METTL14, and WTAP. During herpes simplex virus (HSV-1) infection, cellular gene expression is profoundly suppressed, allowing the virus to monopolize the host transcription and translation apparatus and antagonize antiviral responses. The extent to which HSV-1 uses or manipulates the m6A pathway is not known. Here, we show that, in primary fibroblasts, HSV-1 orchestrates a striking redistribution of the nuclear m6A machinery that progresses through the infection cycle. METTL3 and METTL14 are dispersed into the cytoplasm, whereas WTAP remains nuclear. Other regulatory subunits of the methyltransferase complex, along with the nuclear m6A-modified RNA binding protein YTHDC1 and nuclear demethylase ALKBH5, are similarly redistributed. These changes require ICP27, a viral regulator of host mRNA processing that mediates the nucleocytoplasmic export of viral late mRNAs. Viral gene expression is initially reduced by small interfering RNA (siRNA)-mediated inactivation of the m6A methyltransferase but becomes less impacted as the infection advances. Redistribution of the nuclear m6A machinery is accompanied by a wide-scale reduction in the installation of m6A and other RNA modifications on both host and viral mRNAs. These results reveal a far-reaching mechanism by which HSV-1 subverts host gene expression to favor viral replication.


2004 ◽  
Vol 78 (3) ◽  
pp. 1393-1402 ◽  
Author(s):  
Kenneth E. Murray ◽  
Benjamin P. Steil ◽  
Allan W. Roberts ◽  
David J. Barton

ABSTRACT cis-acting RNA sequences and structures in the 5′ and 3′ nontranslated regions of poliovirus RNA interact with host translation machinery and viral replication proteins to coordinately regulate the sequential translation and replication of poliovirus RNA. The poliovirus internal ribosome entry site (IRES) in the 5′ nontranslated region (NTR) has been implicated as a cis-active RNA required for both viral mRNA translation and viral RNA replication. To evaluate the role of the IRES in poliovirus RNA replication, we exploited the advantages of cell-free translation-replication reactions and preinitiation RNA replication complexes. Genetic complementation with helper mRNAs allowed us to create preinitiation RNA replication complexes containing RNA templates with defined deletions in the viral open reading frame and the IRES. A series of deletions revealed that no RNA elements of either the viral open reading frame or the IRES were required in cis for negative-strand RNA synthesis. The IRES was dispensable for both negative- and positive-strand RNA syntheses. Intriguingly, although small viral RNAs lacking the IRES replicated efficiently, the replication of genome length viral RNAs was stimulated by the presence of the IRES. These results suggest that RNA replication is not directly dependent on a template RNA first functioning as an mRNA. These results further suggest that poliovirus RNA replication is not absolutely dependent on any protein-RNA interactions involving the IRES.


2006 ◽  
Vol 80 (23) ◽  
pp. 11579-11588 ◽  
Author(s):  
Yutong Song ◽  
Peter Friebe ◽  
Eleni Tzima ◽  
Christiane Jünemann ◽  
Ralf Bartenschlager ◽  
...  

ABSTRACT The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5′- and 3′-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5′-UTR, and subsequent viral RNA replication requires sequences in the 3′-UTR and in the 5′-UTR. Addressing previous conflicting reports on a possible function of the 3′-UTR for RNA translation in this study, we found that reporter construct design is an important parameter in experiments testing 3′-UTR function. A translation enhancer function of the HCV 3′-UTR was detected only after transfection of monocistronic reporter RNAs or complete RNA genomes having a 3′-UTR with a precise 3′ terminus. The 3′-UTR strongly stimulates HCV IRES-dependent translation in human hepatoma cell lines but only weakly in nonliver cell lines. The variable region, the poly(U · C) tract, and the most 3′ terminal stem-loop 1 of the highly conserved 3′ X region contribute significantly to translation enhancement, whereas stem-loops 2 and 3 of the 3′ X region are involved only to a minor extent. Thus, the signals for translation enhancement and for the initiation of RNA minus-strand synthesis in the HCV 3′-UTR partially overlap, supporting the idea that these sequences along with viral and possibly also cellular factors may be involved in an RNA 3′-5′ end interaction and a switch between translation and RNA replication.


2012 ◽  
Vol 3 (4) ◽  
pp. 295-306
Author(s):  
Nancy Standart ◽  
Aline Marnef

AbstractThe Pat1 protein family has been the subject of several recent extensive investigations of diverse model systems ranging from yeast, flies and worms to man, using a variety of experimental approaches. Although some contradictions remain, the emerging consensus view is that these RNA-binding proteins act in mRNA decay by physically linking deadenylation with decapping and by regulating gene expression as translational repressors. These multiple functions are present in the single invertebrate Pat1 proteins, whereas, in vertebrates, one Pat1 variant represses translation in early development, while a somatic version synthesised in embrogenesis and in adults acts in mRNA decay. At steady state, Pat1 proteins are found enriched in cytoplasmic P(rocessing)-bodies, and related mRNP complexes and granules. Evidence recently obtained from mammalian tissue culture cells shows that Pat1 shuttles in and out of the nucleus, where it localises to nuclear speckles, PML bodies and nucleolar caps, which suggests RNA-related nuclear functions. Less well understood, Pat1 proteins may play additional roles in miRNA silencing and/or biogenesis, as well in the regulation of viral gene expression. Due to the relatively low level of sequence conservation between Pat1 proteins from different species and lacking any discernable motifs, determining their functional domains has proved difficult, as is obtaining a simple unified view of the location of the binding sites of their interacting proteins in all examined species. Questions that remain to be addressed include the following: 1) What are their roles in the nucleus? 2) What is the link, if one exists, between their cytoplasmic and nuclear roles? 3) Do they have specific mRNA targets? 4) Which signalling pathways regulate their P-body localisation in mammalian cells, which may affect quiescent cell survival?


Sign in / Sign up

Export Citation Format

Share Document