scholarly journals The block to membrane fusion differs with the site of ligand insertion in modified retroviral envelope proteins

2008 ◽  
Vol 89 (4) ◽  
pp. 1049-1058 ◽  
Author(s):  
Byoung Y. Ryu ◽  
Tatiana Zavorotinskaya ◽  
Bernadette Trentin ◽  
Lorraine M. Albritton

Efforts to achieve cell type-specific transduction of retroviral vectors for gene therapy have centred on modification of the envelope protein (Env). Typically, addition of a ligand to Env gives binding to the new or target receptor, but little or no infection, and affects the subunit association of the modified Env. We previously discovered two point mutations that increase targeted infection by over 1000-fold when added to an Env modified by N-terminal insertion of the receptor-binding domain from amphotropic murine leukemia virus Env. Here, we asked whether these mutations would similarly increase transduction by Env modified with a clinically relevant ligand, human interleukin-13 (IL-13L). Addition of the point mutations stabilized the weak subunit association observed in some IL-13L-modified Env proteins, but infection via the target IL-13 receptor still did not occur. Fluorescence-based cell–cell fusion assays and studies with a membrane-curving agent revealed that defects in membrane fusion differed with the site of ligand insertion. When IL-13 was inserted into the N terminus of Env, membrane fusion was blocked prior to membrane-lipid mixing, regardless of whether flanking flexible linkers were added. Unexpectedly, insertion of IL-13 in the proline-rich region showed evidence of initiation of fusion and fusion-peptide exposure, but fusion was blocked at a subsequent step prior to fusion-pore formation. Thus, the site of ligand insertion influenced initiation of membrane fusion and its progression. These observations suggest that a novel site for ligand insertion must be identified before clinically useful targeted transduction will be achieved.

1998 ◽  
Vol 140 (6) ◽  
pp. 1369-1382 ◽  
Author(s):  
Leonid V. Chernomordik ◽  
Vadim A. Frolov ◽  
Eugenia Leikina ◽  
Peter Bronk ◽  
Joshua Zimmerberg

The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell–cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged and continuous in this intermediate, but HA restricted lipid mixing. Depending on the surface density of HA and the membrane lipid composition, this restricted hemifusion intermediate either transformed into a fusion pore or expanded into an unrestricted hemifusion, without pores but with unrestricted lipid mixing. Our results suggest that restriction of lipid flux by a ring of activated HA is necessary for successful fusion, during which a lipidic fusion pore develops in a local and transient hemifusion diaphragm.


2015 ◽  
Vol 185 ◽  
pp. 109-128 ◽  
Author(s):  
Marc Fuhrmans ◽  
Giovanni Marelli ◽  
Yuliya G. Smirnova ◽  
Marcus Müller

1994 ◽  
Vol 127 (6) ◽  
pp. 1885-1894 ◽  
Author(s):  
J Zimmerberg ◽  
R Blumenthal ◽  
D P Sarkar ◽  
M Curran ◽  
S J Morris

The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve".


2008 ◽  
Vol 131 (5) ◽  
pp. 503-513 ◽  
Author(s):  
Subrata Biswas ◽  
Shu-Rong Yin ◽  
Paul S. Blank ◽  
Joshua Zimmerberg

Cholesterol-specific interactions that affect membrane fusion were tested for using insect cells; cells that have naturally low cholesterol levels (<4 mol %). Sf9 cells were engineered (HAS cells) to express the hemagglutinin (HA) of the influenza virus X-31 strain. Enrichment of HAS cells with cholesterol reduced the delay between triggering and lipid dye transfer between HAS cells and human red blood cells (RBC), indicating that cholesterol facilitates membrane lipid mixing prior to fusion pore opening. Increased cholesterol also increased aqueous content transfer between HAS cells and RBC over a broad range of HA expression levels, suggesting that cholesterol also favors fusion pore expansion. This interpretation was tested using both trans-cell dye diffusion and fusion pore conductivity measurements in cholesterol-enriched cells. The results of this study support the hypothesis that host cell cholesterol acts at two stages in membrane fusion: (1) early, prior to fusion pore opening, and (2) late, during fusion pore expansion.


2020 ◽  
Author(s):  
Agata Witkowska ◽  
Susann Spindler ◽  
Reza Gholami Mahmoodabadi ◽  
Vahid Sandoghdar ◽  
Reinhard Jahn

Fusion of biological membranes, although mediated by divergent proteins, is believed to follow a common pathway. It proceeds through distinct steps including docking, merger of proximal leaflets (stalk formation), and formation of a fusion pore. However, the structure of these intermediates is difficult to study due to their short lifetime. Previously, we observed a loosely and tightly docked state preceding leaflet merger using arresting point mutations in SNARE proteins, but the nature of these states remained elusive. Here we used interferometric scattering (iSCAT) microscopy to monitor diffusion of single vesicles across the surface of giant unilamellar vesicles (GUVs). We observed that the diffusion coefficients of arrested vesicles decreased during progression through the intermediate states. Modeling allowed for predicting the number of tethering SNARE complexes upon loose docking and the size of the interacting membrane patches upon tight docking. These results shed new light on the nature of membrane-membrane interactions immediately before fusion.


2010 ◽  
Vol 191 (5) ◽  
pp. 1013-1027 ◽  
Author(s):  
Kristin L. Sens ◽  
Shiliang Zhang ◽  
Peng Jin ◽  
Rui Duan ◽  
Guofeng Zhang ◽  
...  

Recent studies in Drosophila have implicated actin cytoskeletal remodeling in myoblast fusion, but the cellular mechanisms underlying this process remain poorly understood. Here we show that actin polymerization occurs in an asymmetric and cell type–specific manner between a muscle founder cell and a fusion-competent myoblast (FCM). In the FCM, a dense F-actin–enriched focus forms at the site of fusion, whereas a thin sheath of F-actin is induced along the apposing founder cell membrane. The FCM-specific actin focus invades the apposing founder cell with multiple finger-like protrusions, leading to the formation of a single-channel macro fusion pore between the two muscle cells. Two actin nucleation–promoting factors of the Arp2/3 complex, WASP and Scar, are required for the formation of the F-actin foci, whereas WASP but not Scar promotes efficient foci invasion. Our studies uncover a novel invasive podosome-like structure (PLS) in a developing tissue and reveal a previously unrecognized function of PLSs in facilitating cell membrane juxtaposition and fusion.


2009 ◽  
Vol 83 (23) ◽  
pp. 12185-12195 ◽  
Author(s):  
Christopher Barry ◽  
Roy Duncan

ABSTRACT Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using tail truncations, we demonstrate that the last 8 residues of the 36-residue CT of the avian reovirus p10 FAST protein and the last 20 residues of the 68-residue CT of the reptilian reovirus p14 FAST protein enhance, but are not required for, pore expansion and syncytium formation. Further truncations indicate that the membrane-distal 12 residues of the p10 and 47 residues of the p14 CTs are essential for pore formation and that a residual tail of 21 to 24 residues that includes a conserved, membrane-proximal polybasic region present in all FAST proteins is insufficient to maintain FAST protein fusion activity. Unexpectedly, a reextension of the tail-truncated, nonfusogenic p10 and p14 constructs with scrambled versions of the deleted sequences restored pore formation and syncytiogenesis, while reextensions with heterologous sequences partially restored pore formation but failed to rescue syncytiogenesis. The membrane-distal regions of the FAST protein CTs therefore exert multiple effects on the membrane fusion reaction, serving in both sequence-dependent and sequence-independent manners as positive effectors of pore formation, pore expansion, and syncytiogenesis.


2009 ◽  
Vol 83 (23) ◽  
pp. 12643-12650 ◽  
Author(s):  
Ulrike Schön ◽  
Olivia Diem ◽  
Laura Leitner ◽  
Walter H. Günzburg ◽  
Dixie L. Mager ◽  
...  

ABSTRACT The human genome contains more than half a million human endogenous retrovirus (HERV) long terminal repeats (LTRs) that can be regarded as mobile regulatory modules. Many of these HERV LTRs have been recruited during evolution as transcriptional control elements for cellular gene expression. We have cloned LTR sequences from two HERV families, HERV-H and HERV-L, differing widely in their activity and tissue specificity into a murine leukemia virus (MLV)-based promoter conversion vector (ProCon). Various human cell lines were infected with the HERV-MLV hybrid vectors, and cell type-specific expression of the reporter gene was compared with the promoter specificity of the corresponding HERV LTRs in transient-transfection assays. Transcription start site analysis of HERV-MLV hybrid vectors revealed preferential use of the HERV promoter initiation site. Our data show that HERV LTRs function in the context of retroviral vectors in certain cell types and have the potential to be useful as cell type-specific promoters in vector construction.


1987 ◽  
Vol 7 (4) ◽  
pp. 251-268 ◽  
Author(s):  
Joshua Zimmerberg

Exocytosis is considered as four separate steps: adhesion, fusion/pore formation, pore widening, and content discharge. Experiments on both synthetic and natural membranes are presented to show each of these steps. Major differences are seen in the two fusing systems. These differences are discussed in terms of molecular mechanisms of fusion.


Sign in / Sign up

Export Citation Format

Share Document