scholarly journals Antinociceptive Effect of Rat D-Serine Racemase Inhibitors, L-Serine-O-Sulfate, and L-Erythro-3-Hydroxyaspartate in an Arthritic Pain Model

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Claudio Laurido ◽  
Alejandro Hernández ◽  
Teresa Pelissier ◽  
Luis Constandil

N-methyl-D-aspartic acid receptor (NMDAr) activation requires the presence of D-serine, synthesized from L-serine by a pyridoxal 5′-phosphate-dependent serine racemase (SR). D-serine levels can be lowered by inhibiting the racemization of L-serine. L-serine-O-sulfate (LSOS) and L-erythro-3-hydroxyaspartate (LEHA), among others, have proven to be effective in reducing the D-serine levels in culture cells. It is tempting then to try these compounds in their effectiveness to decrease nociceptive levels in rat arthritic pain. We measured the C-reflex paradigm and wind-up potentiation in the presence of intrathecally injected LSOS (100 μg/10 μL) and LEHA (100 μg/10 μL) in normal and monoarthritic rats. Both compounds decreased the wind-up activity in normal and monoarthritic rats. Accordingly, all the antinociceptive effects were abolished when 300 μg/10 μL of D-serine were injected intrathecally. Since noin vivoresults have been presented so far, this constitutes the first evidence that SR inhibitions lower the D-serine levels, thus decreasing the NMDAr activity and the consequent development and maintenance of chronic pain.

2020 ◽  
Vol 11 ◽  
Author(s):  
Chizuko Watanabe ◽  
Asami Komiyama ◽  
Masaru Yoshizumi ◽  
Shinobu Sakurada ◽  
Hirokazu Mizoguchi

The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund’s adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.


2021 ◽  
Author(s):  
◽  
Kelly Paton

<p>Chronic pain causes patients to endure prolonged suffering and discomfort, often having profound effects on quality of life. In New Zealand, one in five people currently suffer from chronic pain. To treat chronic pain, patients are typically prescribed drugs that activate the mu opioid receptor (MOPr), such as morphine, codeine and oxycodone. In recent years in the United States of America, there has been a rapid increase in the use of prescription and non-prescription opioid drugs, with opioid overdoses now the leading cause of accidental death. In New Zealand, daily doses of prescription opioids quadrupled in the ten year period from 2001-2011. Clearly, there is a need for the development of more effective and safe medications. This thesis evaluated two classes of non-addictive compounds: bioactive lipids and kappa opioid receptor (KOPr) agonists. N-docosahexaenoyl ethanolamine (DHEA) is an N-acyl ethanolamine class lipid that is structurally similar to the endocannabinoid anandamide. DHEA has previously been shown to have immune-modulatory effects in vitro, however, the in vivo effects have not previously been tested. Using the intraplantar 2% formaldehyde model in mice, DHEA reduced inflammatory and nociceptive pain via both intraperitoneal (i.p.) and local intraplantar (i.pl.) administration. DHEA significantly reduced formaldehyde-induced footpad oedema and reduced the infiltration of neutrophils into the inflamed tissue. The antinociceptive and anti-oedematous effects were not modulated by pre-treatment with either cannabinoid 1- or 2-type receptor antagonists. DHEA did not have any effect in a thermal nociceptive pain model and did not show any motor coordination impairment or changes in thermoregulation. In the search for non-addictive analgesics, KOPr agonists are a promising alternative. In contrast to MOPr agonists, KOPr agonists play a critical role in regulating the reward system. Salvinorin A (SalA) is a selective KOPr agonist that has antinociceptive and anti-inflammatory effects in vivo, with limited abuse potential. However, the short duration of action and aversive side effects limit the clinical usefulness. The present study aimed to investigate the antinociceptive effects of acute administration of novel analogues of SalA. In the dose-response tail withdrawal assay, SalA and the novel analogues 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail withdrawal assay and the hot plate test compared to SalA. In the intraplantar 2% formaldehyde test, SalA, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced nociceptive pain and inflammatory pain, effects which were reversed by the KOPr antagonist nor-binaltorphimine. SalA, 16-Ethynyl SalA and 16-Bromo SalA reduced paw oedema and reduced the infiltration of neutrophils into the inflamed tissue. However, SalA, 16-Ethynyl SalA and 16-Bromo SalA produced motor incoordination effects. However, 16-Ethynyl SalA did not alter thermoregulation. The KOPr agonists were further assessed in a model of paclitaxel-induced neuropathic pain. In the acute dose-response experiment, 16-Ethynyl SalA was significantly more potent at reducing mechanical allodynia compared to morphine in both male and female mice. SalA and 16-Ethynyl SalA were more potent at reducing cold allodynia than morphine. In a chronic administration model over 22 days, for the treatment of cold and mechanical allodynia, all of the opioid treatments reduced pain, however, the traditional KOPr agonist U50,488, was the most potent, by reducing the male mechanical allodynia and cold allodynia in both sexes back to baseline levels. The ultrastructure of the sciatic nerves were studied, however, it was found that U50,488 did not reverse the effects of paclitaxel on myelin degeneration and mitochondrial damage. Overall, this study has identified DHEA as a modest treatment for inflammatory pain, with reduced side effects and a mechanism of action in contrast to other compounds with a similar structure. The novel KOPr agonists had significant effects in acute pain models with longer duration of action than the parent compound SalA. This is the first known study to investigate the effects of KOPr agonists in a paclitaxel-induced neuropathic pain model, showing that KOPr agonists are a potential therapeutic avenue for this debilitating condition.</p>


2019 ◽  
Vol 9 (11) ◽  
pp. 328 ◽  
Author(s):  
Alsalem ◽  
Altarifi ◽  
Haddad ◽  
Aldossary ◽  
Kalbouneh ◽  
...  

Chronic pain is a persistent and debilitating health problem. Although the use of analgesics such as opioids is useful in mitigating pain, their prolonged use is associated with unwanted effects including abuse liability. This study assesses the antinociceptive effect of combining subtherapeutic doses of two opioids (morphine or tramadol) with the synthetic cannabinoid CP55940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan -2-yl)phenol). It also evaluates the associated adverse effects of these drugs and combinations. Adult male rats were injected with intraplantar complete Freund’s adjuvant (CFA) to produce mechanical allodyia. Antinociceptive effect of morphine, tramadol, the synthetic cannabinoid CP55940, or their combinations was evaluated three to nine days post-CFA injections. Intracranial self-stimulation (ICSS) was utilized to evaluate the abuse liability of these drugs or their combinations. All drugs alone produced a dose-dependent antinociceptive effect. Morphine produced minimal effect on ICSS, but both tramadol and CP55940 produced dose-dependent depression of ICSS. Morphine at a dose of 0.32 mg/kg enhanced the antinociceptive effects of CP55940, in that, CP55940 produced antinociception at a lower dose (0.1 mg/kg) when compared to the vehicle. The aforementioned combinations did not change CP55940-induced depression of ICSS. On the other hand, tramadol failed to enhance the antinociceptive effect of CP55940. Our data suggest that combining CP55940 with morphine, but not tramadol, shows a better antinociceptive profile with no additional risk of abuse liability, which represents a potential pain management approach.


2020 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Mohammad Alsalem ◽  
Ahmad Altarifi ◽  
Mansour Haddad ◽  
Belal Azab ◽  
Heba Kalbouneh ◽  
...  

Both opioids and cannabinoids have well-known antinociceptive effects in different animal models of chronic pain. However, unwanted side effects limit their use. The aim of this study is to evaluate the antinociceptive effect of combining synthetic cannabinoids with subtherapeutic doses of opioids, and to evaluate the effects of these drugs/combinations on rat’s locomotor activity. Intra-plantar injection of Complete Freund’s Adjuvant (CFA) into the left hindpaw and intraperitoneal injection of streptozotocin (STZ) were used to induce inflammatory and diabetic neuropathic pain in adult male Sprague-Dawley rats, respectively. Von Frey filaments were used to assess the antinociceptive effects of opioids (morphine and tramadol) and the synthetic cannabinoids (HU210 and WIN55212) or their combinations on CFA and STZ-induced mechanical allodynia. Open field test was used to evaluate the effect of these drugs or their combinations on locomotion. HU210 and WIN55212 did not produce significant antinociceptive effect on inflammatory pain while only the maximal dose of HU210 (1 mg/kg) was effective in neuropathic pain. Only the maximal doses of morphine (3.2 mg/kg) and tramadol (10 mg/kg) had significant anti-allodynic effects in both models. Tramadol (1 mg/kg) enhanced the antinociceptive effects of WIN55212 but not HU210 in neuropathic pain with no effect on inflammatory pain. However, in open field test, the aforementioned combination did not change tramadol-induced depression of locomotion. Tramadol and WIN55212 combination produces antinociceptive effects in neuropathic but not inflammatory pain at low doses with no additional risk of locomotor impairment, which may be useful in clinical practice.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3350
Author(s):  
Nazlı Turan Yücel ◽  
Derya Osmaniye ◽  
Ümmühan Kandemir ◽  
Asaf Evrim Evren ◽  
Özgür Devrim Can ◽  
...  

In this study, we aimed to design and synthesize novel molecules carrying both the thiazole and piperazine rings in their structures and to investigate their antinociceptive activity. Targeted compounds were obtained by reacting thiosemicarbazide derivative and appropriate 2-bromoacetophenone in ethanol. The structures of the obtained compounds were determined using data from various spectroscopic methods (IR, 1H-NMR, 13C-NMR, and LCMSMS). Experimental data from in vivo tests showed that test compounds 3a–3c, 3f, and 3g (50 mg/kg) significantly prolonged reaction times of animals in tail-clip and hot-plate tests compared to the controls, indicating that these compounds possess centrally mediated antinociceptive activities. Furthermore, these compounds reduced the number of writhing behaviors in the acetic acid-induced writhing tests, showing that the compounds also possess peripheral antinociceptive activity. In the mechanistic studies, naloxone pre-treatments abolished the antinociceptive activities of compounds 3a–3c, 3f, and 3g, indicating that opioidergic mechanisms were involved in their antinociceptive effects. Molecular docking studies demonstrating significant interactions between the active compounds and µ- and δ-opioid receptor proteins supported the pharmacological findings. This study is the first showing that molecules designed to bear thiazole and piperazine moieties together on their structure exert centrally and peripherally mediated antinociceptive effects by activating the opioid system.


2020 ◽  
Vol 6 (4) ◽  
pp. 344-354
Author(s):  
Tingji Shao ◽  
Shaobin Yang ◽  
Peng Yu

Neuronostatin (NST) is a peptide encoded by the somatostatin gene that serves important physiological functions in diverse tissues. Previous studies have shown that intracerebroventricular administration of NST induces antinociceptive effects and hyperalgesic effects as determined by the tail immersion assay and formalin test, respectively. In the present study, we aimed to evaluate the effects of intrathecal (i.t.) injection of NST on nociception in a model of visceral pain, and determine possible mechanisms of action in mice. NST (1, 3, 6, or 12 nmol) was administered to mice, leading to a dose‐dependent antinociceptive effect as determined by the acetic acid‐induced writhing test in mice. NST (1 nmol) also enhanced the antinociceptive effect of morphine (2.5 and 5 μg/kg) in the spine. Naloxone and β‐funaltrexamine hydrochloride significantly antagonized the antinociceptive effect of NST. The expression of G‐protein‐coupled receptor 107 (GPR107) protein and the phosphorylation of PKA at Thr197 were increased after i.t. administration of NST, suggesting that the μ‐opioid receptor and GPR107/PKA signaling pathway are involved in the analgesic response. In conclusion, i.t. injection of NST may potentially be used as a new approach in the mediation of visceral pain.


2021 ◽  
Author(s):  
◽  
Kelly Paton

<p>Chronic pain causes patients to endure prolonged suffering and discomfort, often having profound effects on quality of life. In New Zealand, one in five people currently suffer from chronic pain. To treat chronic pain, patients are typically prescribed drugs that activate the mu opioid receptor (MOPr), such as morphine, codeine and oxycodone. In recent years in the United States of America, there has been a rapid increase in the use of prescription and non-prescription opioid drugs, with opioid overdoses now the leading cause of accidental death. In New Zealand, daily doses of prescription opioids quadrupled in the ten year period from 2001-2011. Clearly, there is a need for the development of more effective and safe medications. This thesis evaluated two classes of non-addictive compounds: bioactive lipids and kappa opioid receptor (KOPr) agonists. N-docosahexaenoyl ethanolamine (DHEA) is an N-acyl ethanolamine class lipid that is structurally similar to the endocannabinoid anandamide. DHEA has previously been shown to have immune-modulatory effects in vitro, however, the in vivo effects have not previously been tested. Using the intraplantar 2% formaldehyde model in mice, DHEA reduced inflammatory and nociceptive pain via both intraperitoneal (i.p.) and local intraplantar (i.pl.) administration. DHEA significantly reduced formaldehyde-induced footpad oedema and reduced the infiltration of neutrophils into the inflamed tissue. The antinociceptive and anti-oedematous effects were not modulated by pre-treatment with either cannabinoid 1- or 2-type receptor antagonists. DHEA did not have any effect in a thermal nociceptive pain model and did not show any motor coordination impairment or changes in thermoregulation. In the search for non-addictive analgesics, KOPr agonists are a promising alternative. In contrast to MOPr agonists, KOPr agonists play a critical role in regulating the reward system. Salvinorin A (SalA) is a selective KOPr agonist that has antinociceptive and anti-inflammatory effects in vivo, with limited abuse potential. However, the short duration of action and aversive side effects limit the clinical usefulness. The present study aimed to investigate the antinociceptive effects of acute administration of novel analogues of SalA. In the dose-response tail withdrawal assay, SalA and the novel analogues 16-Ethynyl SalA and 16-Bromo SalA were more potent than the traditional KOPr agonist U50,488, and 16-Ethynyl SalA was more efficacious. 16-Ethynyl SalA and 16-Bromo SalA both had a longer duration of action in the warm water tail withdrawal assay and the hot plate test compared to SalA. In the intraplantar 2% formaldehyde test, SalA, 16-Ethynyl SalA and 16-Bromo SalA significantly reduced nociceptive pain and inflammatory pain, effects which were reversed by the KOPr antagonist nor-binaltorphimine. SalA, 16-Ethynyl SalA and 16-Bromo SalA reduced paw oedema and reduced the infiltration of neutrophils into the inflamed tissue. However, SalA, 16-Ethynyl SalA and 16-Bromo SalA produced motor incoordination effects. However, 16-Ethynyl SalA did not alter thermoregulation. The KOPr agonists were further assessed in a model of paclitaxel-induced neuropathic pain. In the acute dose-response experiment, 16-Ethynyl SalA was significantly more potent at reducing mechanical allodynia compared to morphine in both male and female mice. SalA and 16-Ethynyl SalA were more potent at reducing cold allodynia than morphine. In a chronic administration model over 22 days, for the treatment of cold and mechanical allodynia, all of the opioid treatments reduced pain, however, the traditional KOPr agonist U50,488, was the most potent, by reducing the male mechanical allodynia and cold allodynia in both sexes back to baseline levels. The ultrastructure of the sciatic nerves were studied, however, it was found that U50,488 did not reverse the effects of paclitaxel on myelin degeneration and mitochondrial damage. Overall, this study has identified DHEA as a modest treatment for inflammatory pain, with reduced side effects and a mechanism of action in contrast to other compounds with a similar structure. The novel KOPr agonists had significant effects in acute pain models with longer duration of action than the parent compound SalA. This is the first known study to investigate the effects of KOPr agonists in a paclitaxel-induced neuropathic pain model, showing that KOPr agonists are a potential therapeutic avenue for this debilitating condition.</p>


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1639
Author(s):  
Hyun-Yong Kim ◽  
Soo-Hyun Park ◽  
Guanglei Zuo ◽  
Kang Hyuk Kim ◽  
Seung Hwan Hwang ◽  
...  

Neuropathic pain is described as the “most terrible of all tortures that a nerve wound may inflict.” The aim of the present study was to demonstrate the antinociceptive effect of Symplocos chinensis f. pilosa Ohwi water extract (SCW) and synthesized derivatives of the isolated compound. The antinociceptive effect was tested using the acetic acid-induced writhing and 5% formalin tests. Antinociceptive effects on neuropathic pain were evaluated using the von Frey test with chronic constriction injury (CCI) and surgical nerve injury (SNI) models and tail-flick test with a vincristine-induced pain model. An Ames test was also conducted. 5-hydroxymethylfurfural (5-HMF) was isolated and derivatives were synthesized with various acid groups. Among the plant water extracts, SCW showed significantly effective activity. Additionally, SCW presented antinociceptive effects in the neuropathic pain models. The SCW water fraction resulted in fewer writhes than the other fractions, and isolated 5-HMF was identified as an effective compound. Because 5-HMF revealed a positive response in the Ames test, derivatives were synthesized. Among the synthesized derivations, 5-succinoxymethylfurfural (5-SMF) showed the best effect in the neuropathic pain model. Our data suggest that SCW and the synthesized compound, 5-SMF, possess effective antinociceptive activity against neuropathic pain.


2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300
Author(s):  
Luciane Angela Nottar Nesello ◽  
Adriana Campos ◽  
Karla Capistrano ◽  
Fátima de Campos Buzzi ◽  
Valdir Cechinel Filho

The present study deals with the chemical composition and antinociceptive effects of Plinia edulis fruit peels, analyzed by writhing, formalin, glutamate and capsaicin tests and comparison with two reference analgesic drugs, acetylsalicylic acid and acetaminophen. Phytochemical analyses of the nonpolar fraction (dichloromethane) obtained from the peels of P. edulis fruits revealed the presence of two triterpenes, maslinic acid and ursolic acid. The methanol extract of P. edulis peels showed a pronounced antinociceptive activity in the writhing test, with inhibition of 91.3% at 10 mg/kg, and its dichloromethane and ethyl acetate fractions presented inhibition of 68.3% and 51.5%, respectively. Maslinic acid showed a dose-dependent effect with inhibition of 60.8% at a dose of 10 mg/kg and ID50 value of 3.31 (2.75 to 4.0) mg/kg. The dichloromethane fraction, evaluated in the formalin-induced pain model at a dose of 10 mg/kg, showed a significant effect on both phases of pain. Maslinic acid was evaluated at different doses (1, 3 and 6 mg/kg) and presented a dose-dependent profile in both phases of pain, being more effective than the reference drug (acetaminophen), which was evaluated at 10 mg/kg. The dichloromethane fraction also inhibited the pain induced by glutamate and capsaicin by around 54% and 44%, respectively, whereas maslinic acid was more effective against glutamate, with 62.5% inhibition at 6 mg/kg, and 32% inhibition against capsaicin-induced pain. The results demonstrated that the pronounced antinociceptive effect presented by P. edulis fruits peels is related, at least in part, to the presence of the triterpenes evidenced in this study.


2005 ◽  
Vol 277-279 ◽  
pp. 62-66 ◽  
Author(s):  
Yu Mi Kim ◽  
Young Hoon Jeon ◽  
Gwang Chun Jin ◽  
Jeong Ok Lim ◽  
Woon Yi Baek

Intrathecal implants of adrenal medullary chromaffin cells relieve chronic pain by secreting catecholamines, opioids and other neuroactive substances. Recently, macrocapsules with hollow fibers were employed to isolate immunologically xenogeneic chromaffin cells, but the poor viability in vivo of the encapsulated chromaffin cells limited the usefulness of this method. In this study, we used microencapsulation technology to increase the viability of chromaffin cells. Bovine adrenal chromaffin cells were microencapsulated with alginate and poly-L-lysine and implanted intrathecally in a rat using the neuropathic pain model. Intrathecal implants of microencapsulated cells relieved cold allodynia, which is the most prominent symptom of the neuropathic pain model in a rat. Furthermore, the microencapsulated chromaffin cells were morphologically normal and retained their functionality. These findings suggest that the intrathecal implant of microencapsulated chromaffin cells might be a useful method for treating chronic pain.


Sign in / Sign up

Export Citation Format

Share Document