scholarly journals Targeted Regulation Of Cgrp Gene Expression

2001 ◽  
Vol 1 ◽  
pp. 5-5 ◽  
Author(s):  
A. F. Russo ◽  
P. L. Durham

The neuropeptide calcitonin gene-related peptide (CGRP) is a potent regulator of cerebral vascular tone and contributes to neurogenic inflammation. Clinical studies have shown that CGRP levels are elevated during the painful phase of migraine headache, then restored to baseline by antimigraine 5-HT1 drugs. Conversely, CGRP is depleted in perivascular nerve terminals from patients who have suffered vasospasm following subarachnoid hemorrhage. We have investigated the mechanisms controlling CGRP expression in the trigeminal ganglia neurons, which provide virtually all of the CGRP innervation to the cerebral vasculature. We found that nerve depolarization, inflammatory compounds, and nitric oxide can increase CGRP synthesis and secretion. Using both adenoviral vectors and transfection approaches, we have shown that the increased synthesis is due to activation of a cell-specific MAP kinase-responsive enhancer upstream of the CGRP gene. Interestingly, the 5-HT1 migraine drugs are able to block this up-regulation by a mechanism that involves a very prolonged elevation of calcium. We have shown that the duration of the calcium signal is a key determinant for whether a MAP kinase responsive gene will be stimulated or repressed by calcium-activated pathways. This observation supports the importance of a finely tuned balance of calcium in the trigeminal neuron, which is intriguing in light of genetic evidence for calcium channel mutations in a rare form of inherited migraine. These studies suggest that modulation of MAP kinase control of the cell-specific CGRP gene enhancer may be a useful therapeutic strategy for neurovascular disorders.

2020 ◽  
Vol 21 (22) ◽  
pp. 8801
Author(s):  
Renáta Szabó ◽  
Denise Börzsei ◽  
Zsuzsanna Szabó ◽  
Alexandra Hoffmann ◽  
István Zupkó ◽  
...  

Endocannabinoids and their receptors are present in the cardiovascular system; however, their actions under different pathological conditions remain controversial. The aim of our study was to examine the effects of anandamide (AEA) on heme oxygenase (HO) and nitric oxide synthase (NOS) systems in an estrogen-depleted rat model. Sham-operated (SO) and surgically induced estrogen-deficient (OVX) female Wistar rats were used. During a two-week period, a group of OVX rats received 0.1 mg/kg estrogen (E2) per os, while AEA-induced alterations were analyzed after two weeks of AEA treatment at the dose of 1.0 mg/kg. At the end of the experiment, cardiac activity and expression of HO and NOS enzymes, content of cannabinoid 1 receptor, as well as concentrations of transient potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP) were measured. Our results show that estrogen withdrawal caused a significant decrease in both NOS and HO systems, and a similar tendency was observed regarding the TRPV1/CGRP pathway. Two weeks of either AEA or E2 treatment restored the adverse changes; however, the combined administration of these two molecules did not result in a further improvement. In light of the potential relationship between AEA and HO/NOS systems, AEA-induced upregulation of HO/NOS enzymes may be a therapeutic strategy in estrogen-deficient conditions.


Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1283-1295
Author(s):  
Karin Warfvinge ◽  
Diana N Krause ◽  
Aida Maddahi ◽  
Anne-Sofie Grell ◽  
Jacob CA Edvinsson ◽  
...  

Background Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. Methods The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. Results Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. Conclusion Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.


1997 ◽  
Vol 229 (3) ◽  
pp. 209-211 ◽  
Author(s):  
Lars Edvinsson ◽  
Leonor Cantera ◽  
Inger Jansen-Olesen ◽  
Rolf Uddman

1999 ◽  
Vol 17 (6) ◽  
pp. 858-858
Author(s):  
S Germain ◽  
F Bonnet ◽  
J Philippe ◽  
S Fuchs ◽  
P Corvol ◽  
...  
Keyword(s):  

2015 ◽  
Vol 35 (15) ◽  
pp. 2658-2672 ◽  
Author(s):  
Yutaka Tojo ◽  
Hiroki Sekine ◽  
Ikuo Hirano ◽  
Xiaoqing Pan ◽  
Tomokazu Souma ◽  
...  

Erythropoietin (Epo) is produced in the kidney and liver in a hypoxia-inducible manner via the activation of hypoxia-inducible transcription factors (HIFs) to maintain oxygen homeostasis. Accelerating Epo production in hepatocytes is one plausible therapeutic strategy for treating anemia caused by kidney diseases. To elucidate the regulatory mechanisms of hepatic Epo production, we analyzed mouse lines harboring liver-specific deletions of genes encoding HIF-prolyl-hydroxylase isoforms (PHD1, PHD2, and PHD3) that mediate the inactivation of HIF1α and HIF2α under normal oxygen conditions. The loss of all PHD isoforms results in both polycythemia, which is caused by Epo overproduction, and fatty livers. We found that deleting any combination of two PHD isoforms induces polycythemia without steatosis complications, whereas the deletion of a single isoform induces no apparent phenotype. Polycythemia is prevented by the loss of either HIF2α or the hepatocyte-specificEpogene enhancer (EpoHE). Chromatin analyses show that the histones aroundEpoHEdissociate from the nucleosome structure after HIF2α activation. HIF2α also induces the expression of HIF3α, which is involved in the attenuation of Epo production. These results demonstrate that the total amount of PHD activity is more important than the specific function of each isoform for hepaticEpoexpression regulated by a PHD-HIF2α-EpoHEcascadein vivo.


1990 ◽  
Vol 5 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Gilbert J. Cote ◽  
Ronald V. Abruzzese ◽  
Robert F. Gagel ◽  
CEES J. M. Lips

Sign in / Sign up

Export Citation Format

Share Document