scholarly journals Asymmetric Cell Kinetics Genes: The Key to Expansion of Adult Stem Cells in Culture

2002 ◽  
Vol 2 ◽  
pp. 1906-1921 ◽  
Author(s):  
James L. Sherley

A singular challenge in stem cell research today is the expansion and propagation of functional adult stem cells. Unlike embryonic stem cells, which are immortal in culture, adult stem cells are notorious for the difficulty encountered when attempts are made to expand them in culture. One overlooked reason for this difficulty may be the inherent asymmetric cell kinetics of stem cells in postnatal somatic tissues. Senescence is the expected fate of a culture whose growth depends on adult stem cells that divide with asymmetric cell kinetics. Therefore, the bioengineering of strategies to expand adult stem cells in culture requires knowledge of cellular mechanisms that control asymmetric cell kinetics. The properties of several genes recently implicated to function in a cellular pathway(s) that regulates asymmetric cell kinetics are discussed. Understanding the function of these genes in asymmetric cell kinetics mechanisms may be the key that unlocks the adult stem cell expansion problem.

2021 ◽  
Vol 2 ◽  
pp. 2
Author(s):  
Vikash Chandra ◽  
Mudasir Bashir Gugjoo ◽  
Amarpal ◽  
G. Taru Sharma

Stem cells are wonder cells that function silently in an individual to grow and/to regenerate. There are various stem cell types; some especially embryonic stem cells (ESCs) favor individual development while more advanced cells like adult stem cells play mostly repair and tissue matrix secretion role. Among various adult stem cell types, mesenchymal stem cells play an important role to maintain tissue homeostasis. These cells are available in almost all the tissue types and exhibit features similar to the ESCs. These cells are immunoevasive, immune modulatory, and/anti-inflammatory, and bear properties of self-renewal (although limited), multiplication, and differentiation. In addition, these cells are able to migrate and home-in to the distant tissues. All these features make these cells potential candidates for therapeutic applications and drug development. There are various studies that have favored their role in therapeutics and drug development, although more studies and further insights are desired to make stem cell therapy a definitive therapeutic option.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 225
Author(s):  
Claire Racaud-Sultan ◽  
Nathalie Vergnolle

In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.


2007 ◽  
Vol 16 (8) ◽  
pp. 867-873 ◽  
Author(s):  
David J. Eve ◽  
Paul R. Sanberg

One of the fastest growing fields in researching treatments for neurodegenerative and other disorders is the use of stem cells. These cells are naturally occurring and can be obtained from three different stages of an organism's life: embryonic, fetal, and adult. In the US, political doctrine has restricted use of federal funds for stem cells, enhancing research towards an adult source. In order to determine how this legislation may be represented by the stem cell field, a retrospective analysis of stem cell articles published in the journal Cell Transplantation over a 2-year period was performed. Cell Transplantation is considered a translational journal from preclinical to clinical, so it was of interest to determine the publication outcome of stem cell articles 6 years after the US regulations. The distribution of the source of stem cells was found to be biased towards the adult stage, but relatively similar over the embryonic and fetal stages. The fetal stem cell reports were primarily neural in origin, whereas the adult stem cell ones were predominantly mesenchymal and used mainly in neural studies. The majority of stem cell studies published in Cell Transplantation were found to fall under the umbrella of neuroscience research. American scientists published the most articles using stem cells with a bias towards adult stem cells, supporting the effect of the legislation, whereas Europe was the leading continent with a bias towards embryonic and fetal stem cells, where research is “controlled” but not restricted. Japan was also a major player in the use of stem cells. Allogeneic transplants (where donor and recipient are the same species) were the most common transplants recorded, although the transplantation of human-derived stem cells into rodents was the most common specific transplantation performed. This demonstrates that the use of stem cells is an increasingly important field (with a doubling of papers between 2005 and 2006), which is likely to develop into a major therapeutic area over the next few decades and that funding restrictions can affect the type of research being performed.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2020 ◽  
Vol 21 (1) ◽  
pp. 362 ◽  
Author(s):  
Silvia Parisi ◽  
Silvia Piscitelli ◽  
Fabiana Passaro ◽  
Tommaso Russo

HMGA1 and HMGA2 are chromatin architectural proteins that do not have transcriptional activity per se, but are able to modify chromatin structure by interacting with the transcriptional machinery and thus negatively or positively regulate the transcription of several genes. They have been extensively studied in cancer where they are often found to be overexpressed but their functions under physiologic conditions have still not been completely addressed. Hmga1 and Hmga2 are expressed during the early stages of mouse development, whereas they are not detectable in most adult tissues. Hmga overexpression or knockout studies in mouse have pointed to a key function in the development of the embryo and of various tissues. HMGA proteins are expressed in embryonic stem cells and in some adult stem cells and numerous experimental data have indicated that they play a fundamental role in the maintenance of stemness and in the regulation of differentiation. In this review, we discuss available experimental data on HMGA1 and HMGA2 functions in governing embryonic and adult stem cell fate. Moreover, based on the available evidence, we will aim to outline how HMGA expression is regulated in different contexts and how these two proteins contribute to the regulation of gene expression and chromatin architecture in stem cells.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4303-4306 ◽  
Author(s):  
Gail P. Risbridger ◽  
Renea A. Taylor

The isolation and characterization of prostatic stem cells has received significant attention in the last few years based on the belief that aberrant regulation of adult stem cells leads to prostate disease including cancer. The nature of the perturbations in stem cell regulation remains largely unknown. Although adult stem cells are can be governed by autonomous regulatory mechanisms, the stromal niche environment also provides essential cues to direct directing differentiation decisions and can lead to aberrant proliferation and/or differentiation. Elegant tissue recombination experiments, pioneered by Gerald Cunha and colleagues, provided evidence that quiescent epithelial tissues containing adult stem cells were capable of altered differentiation in response to inductive and instructive mesenchyme. In more recent times, it has been demonstrated that embryonic mesenchyme is sufficiently powerful to direct the differentiation of embryonic stem cells into mature prostate or bladder. In addition, prostatic tumor stroma provides another unique niche or microenvironment for stem cell differentiation that is distinct to normal stroma. This review highlights the importance of the appropriate selection of the stromal cell niche for tissue regeneration and implies plasticity of adult stem cells that is dictated by the tissue microenvironment.


2011 ◽  
Vol 23 (1) ◽  
pp. 243 ◽  
Author(s):  
S.-A. Choi ◽  
J.-H. Lee ◽  
K.-J. Kim ◽  
E.-Y. Kim ◽  
K.-S. Park ◽  
...  

Adult stem cells have the capacity to differentiate into several different cell types, although their differentiation potential is limited compared with that of embryonic stem cells. Thus, adult stem cells are regarded as an exciting source for new cell therapies. Recent observations also indicate that stem cells derived from second-trimester amniocentesis are pluripotent – capable of differentiating into multiple lineages, including representatives of all 3 embryonic germ layers. In addition, amniotic fluid stem cells can be used in the generation of disease- or patient-specific stem cells, and amniotic fluid stem cells could be an ideal source for autologous cell replacement therapy in the later life of the fetus. The aim of the present study was to investigate isolation and characterisation of human amniotic fluid-derived mesenchymal stem cells (hAFS). We successfully isolated and characterised hAFS. Amniotic fluid samples were collected in the second trimester (median gestational age: 16 weeks, range: 15–17 weeks) for prenatal diagnosis. Specimens (2 mL) were centrifuged and incubated in low-glucose DMEM supplemented with 10% FBS, 25 ng of basic fibroblast growth factor, and 10 ng of epidermal growth factor at 37°C with 5% CO2. Human amniotic fluid cell (passage 6) expression of stem cell specific markers OCT-4, SOX2, Rex1, FGF4, and NANOG was confirmed by RT-PCR. Flow cytometric analysis showed that hAFS (passage 10) were positive for CD44, CD29, CD146, STRO1, and CD90 but negative for CD19. Immunocytochemical analysis of hAFS (passage 11) also showed the expression of OCT-4, SSEA-1, CD44, CD29, CD146, STRO1, and CD90, but hAFS were negative for CD19 and CD14. In conclusion, according to the previous studies on other mammalians, hAFS are an appropriate source of pluripotent stem cells. Here, we demonstrated that hAFS have a high expression of stem cell specific marker, including embryonic stem cell marker and mesenchymal stem cell marker. Therefore, amniotic fluid may be a suitable alternative source of multipotent stem cells.


2009 ◽  
Vol 58 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Cristina A. Szigyarto ◽  
Paul Sibbons ◽  
Gill Williams ◽  
Mathias Uhlen ◽  
Su M. Metcalfe

Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.


2019 ◽  
Vol 1 (1) ◽  

Stem cells have the ability to go through various cell divisions and also maintain undifferentiated state. Stem cells are Embryonic (Pluripotent) and adult stem cells. Pluripotent stem cells give rise to all tissues such as ectoderm, mesoderm and endoderm. Embryonic stem cells isolated from inner cell mass of embryo blastocyst. Adult stem cells are also undifferentiated cells present in adult organisms and repair the tissue when damaged occurs but number in less. Adult stem cells are present in bone marrow, adipose tissue, blood and juvenile state umbilical cord and tissue of specific origin like liver, heart, intestine and neural tissue. Embryonic stem cells from blastocyst have the ethical problems and tumorogenecity. These can be identified by flow cytometry. There are wide range of stem cell markers which are useful in identifying them. Most of the pluripotent cell markers are common with tumor cell markers which throws a challenge for certainty.


Sign in / Sign up

Export Citation Format

Share Document