scholarly journals Validation of Dual Energy X-Ray Absorptiometry and Nuclear Magnetic Resonance in the Analysis of Body Composition in Mice

2020 ◽  
Vol 27 (4) ◽  
pp. 291-299
Author(s):  
Kyung-Wan Baek ◽  
Ji-Seok Kim ◽  
Jin Sung Park ◽  
So-Jeong Kim ◽  
Yong-Chan Ha ◽  
...  
2020 ◽  
Author(s):  
Kyung-Wan Baek ◽  
Ji-Seok Kim ◽  
Jin Sung Park ◽  
So-Jeong Kim ◽  
Yong-Chan Ha ◽  
...  

Abstract Background: As an instrument for measuring body composition in experimental animals, dual-energy X-ray absorptiometry (DXA) is ideal for accuracy, cost, and measurement efficiency. However, there is too little insight into the effectiveness of the various aspects of applying DXA to experimental animals. Therefore, we investigated whether to compare and verify the precision and accuracy of DXA and nuclear magnetic resonance (NMR) animal body composition analyzers. We used 30 ICR mice in the study. First, in order to evaluate the reproducibility of DXA and NMR, we did repeated measurements by repositioning each mouse in anesthesia and euthanasia states. Subsequently, the accuracy of each device was evaluated by comparing the weight measured before the experiment, the weight of the tissue extracted from the mice after the experiment, and the measured DXA and NMR. In addition, when measuring the body composition of animals, we compared the time and the measurable body composition parameters and summarized the advantages and disadvantages of the two devices.Results: Compared to NMR, DXA had the advantage of a fast measurement of bone composition and rapid image analysis. In addition, DXA showed a higher correlation (> 95%) with FM, body weight, and fBMC baseline than did NMR (> 85%).Conclusion: In conclusion, DXA was confirmed to have higher precision and measurement accuracy than did NMR. Therefore, DXA is an effective method for evaluating the body composition of experimental animals.


2007 ◽  
Vol 21 (3) ◽  
pp. 1548-1561 ◽  
Author(s):  
S. R. Kelemen ◽  
M. Afeworki ◽  
M. L. Gorbaty ◽  
M. Sansone ◽  
P. J. Kwiatek ◽  
...  

Tetrahedron ◽  
2001 ◽  
Vol 57 (49) ◽  
pp. 9789-9798 ◽  
Author(s):  
Shawn R Hitchcock ◽  
George P Nora ◽  
David M Casper ◽  
Michael D Squire ◽  
Christopher D Maroules ◽  
...  

1980 ◽  
Vol 58 (17) ◽  
pp. 1821-1828 ◽  
Author(s):  
Gary D. Fallon ◽  
Bryan M. Gatehouse ◽  
Allan Pring ◽  
Ian D. Rae ◽  
Josephine A. Weigold

Ethyl-3-amino-2-benzoyl-2-butenoate crystallizes from pentane as either the E (mp 82–84 °C) or the Z-isomer (mp 95.5–96.5 °C). The E isomer is less stable, and changes spontaneously into the Z, which bas been identified by X-ray crystallography. The structure is characterised by an N–H/ester CO hydrogen bond and a very long C2—C3 bond (1.39 Å). Nuclear magnetic resonance methods have been used to measure the rate of [Formula: see text] isomerization at several temperatures, leading to the estimate that the free energy of activation at 268 K is 56 ± 8 kJ.


Sign in / Sign up

Export Citation Format

Share Document