scholarly journals A robust statistical framework for reconstructing genomes from metagenomic data

2014 ◽  
Author(s):  
Dongwan Don Kang ◽  
Jeff Froula ◽  
Rob Egan ◽  
Zhong Wang

We present software that reconstructs genomes from shotgun metagenomic sequences using a reference-independent approach. This method permits the identification of OTUs in large complex communities where many species are unknown. Binning reduces the complexity of a metagenomic dataset enabling many downstream analyses previously unavailable. In this study we developed MetaBAT, a robust statistical framework that integrates probabilistic distances of genome abundance with sequence composition for automatic binning. Applying MetaBAT to a human gut microbiome dataset identified 173 highly specific genomes bins including many representing previously unidentified species.


Author(s):  
Bo Zheng ◽  
Yinchao He ◽  
Pengxiang Zhang ◽  
Yi-Xin Huo ◽  
Yanbin Yin

Dietary polyphenols can significantly benefit human health, but their bioavailability is metabolically controlled by human gut microbiota. To facilitate the study of polyphenol metabolism for human gut health, we have manually curated experimentally characterized polyphenol utilization proteins (PUPs) from published literature. This resulted in 60 experimentally characterized PUPs (named seeds) with various metadata, such as species and substrate. Further database search found 107,851 homologs of the seeds from UniProt and UHGP (Unified Human Gastrointestinal Protein) databases. All PUP seeds and homologs were classified into protein classes, families and subfamilies based on Enzyme Commission (EC) numbers, Pfam (protein family) domains and sequence similarity networks. By locating PUP homologs in the genomes of UHGP, we have identified 1,074 physically linked PUP gene clusters (PGCs), which are potentially involved in polyphenol metabolism in the human gut. The gut microbiome of Africans was consistently ranked the top in terms of the abundance and prevalence of PUP homologs and PGCs among all geographical continents. This reflects the fact that dietary polyphenols are more commonly consumed by African population than other populations such as Europeans and North Americans. A case study of the Hadza hunter-gatherer microbiome verified the feasibility of using dbPUP to profile metagenomic data for biologically meaningful discovery, suggesting an association between diet and PUP abundance. A Pfam domain enrichment analysis of PGCs identified a number of putatively novel PUP families. Lastly, a user-friendly web interface ( https://bcb.unl.edu/dbpup/ ) provides all the data online to facilitate the research of polyphenol metabolism for improved human health. Importance Long-term consumption of polyphenol-rich foods have been shown to lower the risk of various human diseases such as cardiovascular diseases, cancers, and metabolic diseases. Raw polyphenols are often enzymatically processed by gut microbiome, which encode various polyphenol utilization proteins (PUPs) to produce metabolites with much higher bioaccessibility to gastrointestinal cells. This study delivered dbPUP as an online database for experimentally characterized PUPs and their homologs in human gut microbiome. This work also performed a systematic classification of PUPs into enzyme classes, families, and subfamilies. The signature Pfam domains were identified for PUP families, enabling conserved domain-based PUP annotation. This standardized sequence similarity-based PUP classification system offered a guideline for the future inclusion of new experimentally characterized PUPs and the creation of new PUP families. An in-depth data analysis was further conducted on PUP homologs and physically linked PUP gene clusters (PGCs) in gut microbiomes of different human populations.



2021 ◽  
Author(s):  
Domenick J Braccia ◽  
Xiaofang Jiang ◽  
Mihai Pop ◽  
Brantley Hall

As one of the three mammalian gasotransmitters, hydrogen sulfide (H2S) plays a major role in maintaining physiological homeostasis. Endogenously produced H2S plays numerous beneficial roles including mediating vasodilation and conferring neuroprotection. Due to its high membrane permeability, exogenously produced H2S originating from the gut microbiota can also influence human physiology and is implicated in reducing intestinal mucosal integrity and potentiating genotoxicity and is therefore a potential target for therapeutic interventions. Gut microbial H2S production is often attributed to dissimilatory sulfate reducers such as Desulfovibrio and Bilophila species. However, an alternative source for H2S production, cysteine degradation, is present in gut microbes, but the genes responsible for cysteine degradation have not been systematically annotated in gut microbes. To better understand the potential for H2S production via cysteine degradation by the human gut microbiome, we performed a comprehensive search for genes encoding cysteine-degrading genes in 4,644 bacterial genomes from the Unified Human Gastrointestinal Genome (UHGG) catalogue. We identified 407 gut bacterial species as putative cysteine degrading bacteria, 328 of which have not been previously implicated in H2S production. We identified the presence of at least one putative cysteine degrading bacteria in metagenomic data of 100% of 6,644 healthy subjects and the expression of cysteine-degrading genes in metatranscriptomics data of 100% of 59 samples. Additionally, putative cysteine-degrading bacteria are more abundant than sulfate reducing bacteria (p<2.2e-16). Overall, this study improves our understanding of the capacity for H2S production by the human gut microbiome and may help to inform interventions to therapeutically modulate gut microbial H2S production.



2020 ◽  
Author(s):  
Renuka R. Nayak ◽  
Margaret Alexander ◽  
Ishani Deshpande ◽  
Kye Stapleton-Grey ◽  
Carles Ubeda ◽  
...  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaro Salosensaari ◽  
Ville Laitinen ◽  
Aki S. Havulinna ◽  
Guillaume Meric ◽  
Susan Cheng ◽  
...  

AbstractThe collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.



Sign in / Sign up

Export Citation Format

Share Document