scholarly journals ZIFA: Dimensionality reduction for zero-inflated single cell gene expression analysis

2015 ◽  
Author(s):  
Christopher Yau ◽  
Emma Pierson

Single cell RNA-seq data allows insight into normal cellular function and diseases including cancer through the molecular characterisation of cellular state at the single-cell level. Dimensionality reduction of such high-dimensional datasets is essential for visualization and analysis, but single-cell RNA-seq data is challenging for classical dimensionality reduction methods because of the prevalence of dropout events leading to zero-inflated data. Here we develop a dimensionality reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout characteristics, and show that it improves performance on simulated and biological datasets.

2020 ◽  
Vol 21 (S16) ◽  
Author(s):  
Ruiyu Xiao ◽  
Guoshan Lu ◽  
Wanqian Guo ◽  
Shuilin Jin

Abstract Background Single-cell RNA sequencing can be used to fairly determine cell types, which is beneficial to the medical field, especially the many recent studies on COVID-19. Generally, single-cell RNA data analysis pipelines include data normalization, size reduction, and unsupervised clustering. However, different normalization and size reduction methods will significantly affect the results of clustering and cell type enrichment analysis. Choices of preprocessing paths is crucial in scRNA-Seq data mining, because a proper preprocessing path can extract more important information from complex raw data and lead to more accurate clustering results. Results We proposed a method called NDRindex (Normalization and Dimensionality Reduction index) to evaluate data quality of outcomes of normalization and dimensionality reduction methods. The method includes a function to calculate the degree of data aggregation, which is the key to measuring data quality before clustering. For the five single-cell RNA sequence datasets we tested, the results proved the efficacy and accuracy of our index. Conclusions This method we introduce focuses on filling the blanks in the selection of preprocessing paths, and the result proves its effectiveness and accuracy. Our research provides useful indicators for the evaluation of RNA-Seq data.


2019 ◽  
Author(s):  
Hongxu Ding ◽  
Andrew Blair ◽  
Ying Yang ◽  
Joshua M. Stuart

ABSTRACTThe maintenance and transition of cellular states are controlled by biological processes. Here we present a gene set-based transformation of single cell RNA-Seq data into biological process activities that provides a robust description of cellular states. Moreover, as these activities represent species-independent descriptors, they facilitate the alignment of single cell states across different organisms.


2020 ◽  
Author(s):  
Felix Raimundo ◽  
Celine Vallot ◽  
Jean Philippe Vert

AbstractBackgroundMany computational methods have been developed recently to analyze single-cell RNA-seq (scRNA-seq) data. Several benchmark studies have compared these methods on their ability for dimensionality reduction, clustering or differential analysis, often relying on default parameters. Yet given the biological diversity of scRNA-seq datasets, parameter tuning might be essential for the optimal usage of methods, and determining how to tune parameters remains an unmet need.ResultsHere, we propose a benchmark to assess the performance of five methods, systematically varying their tunable parameters, for dimension reduction of scRNA-seq data, a common first step to many downstream applications such as cell type identification or trajectory inference. We run a total of 1.5 million experiments to assess the influence of parameter changes on the performance of each method, and propose two strategies to automatically tune parameters for methods that need it.ConclusionsWe find that principal component analysis (PCA)-based methods like scran and Seurat are competitive with default parameters but do not benefit much from parameter tuning, while more complex models like ZinbWave, DCA and scVI can reach better performance but after parameter tuning.


2020 ◽  
Author(s):  
Tianyi Sun ◽  
Dongyuan Song ◽  
Wei Vivian Li ◽  
Jingyi Jessica Li

AbstractIn the burgeoning field of single-cell transcriptomics, a pressing challenge is to benchmark various experimental protocols and numerous computational methods in an unbiased manner. Although dozens of simulators have been developed for single-cell RNA-seq (scRNA-seq) data, they lack the capacity to simultaneously achieve all the three goals: preserving genes, capturing gene correlations, and generating any number of cells with varying sequencing depths. To fill in this gap, here we propose scDesign2, an interpretable simulator that achieves all the three goals and generates high-fidelity synthetic data for multiple scRNA-seq protocols and other single-cell gene expression count-based technologies. Compared with existing simulators, scDesign2 is advantageous in its transparent use of probabilistic models and is unique in its ability to capture gene correlations via copula. We verify that scDesign2 generates more realistic synthetic data for four scRNA-seq protocols (10x Genomics, CEL-Seq2, Fluidigm C1, and Smart-Seq2) and two single-cell spatial transcriptomics protocols (MERFISH and pciSeq) than existing simulators do. Under two typical computational tasks, cell clustering and rare cell type detection, we demonstrate that scDesign2 provides informative guidance on deciding the optimal sequencing depth and cell number in single-cell RNA-seq experimental design, and that scDesign2 can effectively benchmark computational methods under varying sequencing depths and cell numbers. With these advantages, scDesign2 is a powerful tool for single-cell researchers to design experiments, develop computational methods, and choose appropriate methods for specific data analysis needs.


Author(s):  
Bin Yu ◽  
Chen Chen ◽  
Ren Qi ◽  
Ruiqing Zheng ◽  
Patrick J Skillman-Lawrence ◽  
...  

Abstract The rapid development of single-cell RNA sequencing (scRNA-Seq) technology provides strong technical support for accurate and efficient analyzing single-cell gene expression data. However, the analysis of scRNA-Seq is accompanied by many obstacles, including dropout events and the curse of dimensionality. Here, we propose the scGMAI, which is a new single-cell Gaussian mixture clustering method based on autoencoder networks and the fast independent component analysis (FastICA). Specifically, scGMAI utilizes autoencoder networks to reconstruct gene expression values from scRNA-Seq data and FastICA is used to reduce the dimensions of reconstructed data. The integration of these computational techniques in scGMAI leads to outperforming results compared to existing tools, including Seurat, in clustering cells from 17 public scRNA-Seq datasets. In summary, scGMAI is an effective tool for accurately clustering and identifying cell types from scRNA-Seq data and shows the great potential of its applicative power in scRNA-Seq data analysis. The source code is available at https://github.com/QUST-AIBBDRC/scGMAI/.


2017 ◽  
Author(s):  
Tao Peng ◽  
Qing Nie

AbstractMeasurement of gene expression levels for multiple genes in single cells provides a powerful approach to study heterogeneity of cell populations and cellular plasticity. While the expression levels of multiple genes in each cell are available in such data, the potential connections among the cells (e.g. the cellular state transition relationship) are not directly evident from the measurement. Classifying the cellular states, identifying their transitions among those states, and extracting the pseudotime ordering of cells are challenging due to the noise in the data and the high-dimensionality in the number of genes in the data. In this paper we adapt the classical self-organizing-map (SOM) approach for single-cell gene expression data (SOMSC), such as those based on single cell qPCR and single cell RNA-seq. In SOMSC, a cellular state map (CSM) is derived and employed to identify cellular states inherited in the population of the measured single cells. Cells located in the same basin of the CSM are considered as in one cellular state while barriers among the basins in CSM provide information on transitions among the cellular states. A cellular state transitions path (e.g. differentiation) and a temporal ordering of the measured single cells are consequently obtained. In addition, SOMSC could estimate the cellular state replication probability and transition probabilities. Applied to a set of synthetic data, one single-cell qPCR data set on mouse early embryonic development and two single-cell RNA-seq data sets, SOMSC shows effectiveness in capturing cellular states and their transitions presented in the high-dimensional single-cell data. This approach will have broader applications to analyzing cellular fate specification and cell lineages using single cell gene expression data


2019 ◽  
Author(s):  
Nigatu A. Adossa ◽  
Leif Schauser ◽  
Vivi G. Gregersen ◽  
Laura L. Elo

AbstractBackgroundRecent advances in single-cell gene expression profiling technology have revolutionized the understanding of molecular processes underlying developmental cell and tissue differentiation, enabling the discovery of novel cell-types and molecular markers that characterize developmental trajectories. Common approaches for identifying marker genes are based on pairwise statistical testing for differential gene expression between cell-types in heterogeneous cell populations, which is challenging due to unequal sample sizes and variance between groups resulting in little statistical power and inflated type I errors.ResultsWe developed an alternative feature extraction method, Marker gene Identification for Cell-type Identity (MICTI) that encodes the cell-type specific expression information to each gene in every single-cell. This approach identifies features (genes) that are cell-type specific for a given cell-type in heterogeneous cell population. To validate this approach, we used (i) simulated single cell RNA-seq data, (ii) human pancreatic islet single-cell RNA-seq data and (iii) a simulated mixture of human single-cell RNA-seq data related to immune cells, particularly B cells, CD4+ memory cells, CD8+ memory cells, dendritic cells, fibroblast cells, and lymphoblast cells. For all cases, we were able to identify established cell-type-specific markers.ConclusionsOur approach represents a highly efficient and fast method as an alternative to differential expression analysis for molecular marker identification in heterogeneous single-cell RNA-seq data.


2017 ◽  
Author(s):  
Diego Calderon ◽  
Anand Bhaskar ◽  
David A. Knowles ◽  
David Golan ◽  
Towfique Raj ◽  
...  

AbstractPrevious studies have prioritized trait-relevant cell types by looking for an enrichment of GWAS signal within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel cell types, and yet, hardly any work exists linking single-cell RNA-seq to phenotypes of interest. To address this deficiency, we present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant cell types and genes from GWAS summary statistics and single-cell RNA-seq. We demonstrate RolyPoly’s accuracy through simulation and validate previously known tissue-trait associations. We discover a significant association between microglia and late-onset Alzheimer’s disease, and an association between oligodendrocytes and replicating fetal cortical cells with schizophrenia. Additionally, RolyPoly computes a trait-relevance score for each gene which reflects the importance of expression specific to a cell type. We found that differentially expressed genes in the prefrontal cortex of Alzheimer’s patients were significantly enriched for highly ranked genes by RolyPoly gene scores. Overall, our method represents a powerful framework for understanding the effect of common variants on cell types contributing to complex traits.


Sign in / Sign up

Export Citation Format

Share Document