scholarly journals Feature extraction approach in single-cell gene expression profiling for cell-type marker identification

2019 ◽  
Author(s):  
Nigatu A. Adossa ◽  
Leif Schauser ◽  
Vivi G. Gregersen ◽  
Laura L. Elo

AbstractBackgroundRecent advances in single-cell gene expression profiling technology have revolutionized the understanding of molecular processes underlying developmental cell and tissue differentiation, enabling the discovery of novel cell-types and molecular markers that characterize developmental trajectories. Common approaches for identifying marker genes are based on pairwise statistical testing for differential gene expression between cell-types in heterogeneous cell populations, which is challenging due to unequal sample sizes and variance between groups resulting in little statistical power and inflated type I errors.ResultsWe developed an alternative feature extraction method, Marker gene Identification for Cell-type Identity (MICTI) that encodes the cell-type specific expression information to each gene in every single-cell. This approach identifies features (genes) that are cell-type specific for a given cell-type in heterogeneous cell population. To validate this approach, we used (i) simulated single cell RNA-seq data, (ii) human pancreatic islet single-cell RNA-seq data and (iii) a simulated mixture of human single-cell RNA-seq data related to immune cells, particularly B cells, CD4+ memory cells, CD8+ memory cells, dendritic cells, fibroblast cells, and lymphoblast cells. For all cases, we were able to identify established cell-type-specific markers.ConclusionsOur approach represents a highly efficient and fast method as an alternative to differential expression analysis for molecular marker identification in heterogeneous single-cell RNA-seq data.

2021 ◽  
Author(s):  
Yongjin Park ◽  
Liang He ◽  
Jose Davila-Velderrain ◽  
Lei Hou ◽  
Shahin Mohammadi ◽  
...  

AbstractThousands of genetic variants acting in multiple cell types underlie complex disorders, yet most gene expression studies profile only bulk tissues, making it hard to resolve where genetic and non-genetic contributors act. This is particularly important for psychiatric and neurodegenerative disorders that impact multiple brain cell types with highly-distinct gene expression patterns and proportions. To address this challenge, we develop a new framework, SPLITR, that integrates single-nucleus and bulk RNA-seq data, enabling phenotype-aware deconvolution and correcting for systematic discrepancies between bulk and single-cell data. We deconvolved 3,387 post-mortem brain samples across 1,127 individuals and in multiple brain regions. We find that cell proportion varies across brain regions, individuals, disease status, and genotype, including genetic variants in TMEM106B that impact inhibitory neuron fraction and 4,757 cell-type-specific eQTLs. Our results demonstrate the power of jointly analyzing bulk and single-cell RNA-seq to provide insights into cell-type-specific mechanisms for complex brain disorders.


Author(s):  
Bin Yu ◽  
Chen Chen ◽  
Ren Qi ◽  
Ruiqing Zheng ◽  
Patrick J Skillman-Lawrence ◽  
...  

Abstract The rapid development of single-cell RNA sequencing (scRNA-Seq) technology provides strong technical support for accurate and efficient analyzing single-cell gene expression data. However, the analysis of scRNA-Seq is accompanied by many obstacles, including dropout events and the curse of dimensionality. Here, we propose the scGMAI, which is a new single-cell Gaussian mixture clustering method based on autoencoder networks and the fast independent component analysis (FastICA). Specifically, scGMAI utilizes autoencoder networks to reconstruct gene expression values from scRNA-Seq data and FastICA is used to reduce the dimensions of reconstructed data. The integration of these computational techniques in scGMAI leads to outperforming results compared to existing tools, including Seurat, in clustering cells from 17 public scRNA-Seq datasets. In summary, scGMAI is an effective tool for accurately clustering and identifying cell types from scRNA-Seq data and shows the great potential of its applicative power in scRNA-Seq data analysis. The source code is available at https://github.com/QUST-AIBBDRC/scGMAI/.


2021 ◽  
Author(s):  
Kai Kang ◽  
Caizhi David Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

AbstractBackgroundBiological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and with a new function to aid interpretation of deconvolution outcomes. The R package would be of interest for the broader R community.ResultWe developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating CDSeq-estimated cell types using publicly available single-cell RNA sequencing (scRNA-seq) data (single-cell data from 20 major organs are included in the R package). This function allows users to readily interpret and visualize the CDSeq-estimated cell types. We carried out additional validations of the CDSeqR software with in silico and in vitro mixtures and with real experimental data including RNA-seq data from the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) project.ConclusionsThe existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell-cell interactions in the tissue microenvironment. However, bulk level analyses neglect tissue heterogeneity and hinder investigation in a cell-type-specific fashion. The CDSeqR package can be viewed as providing in silico single-cell dissection of bulk measurements. It enables researchers to gain cell-type-specific information from bulk RNA-seq data.


2017 ◽  
Author(s):  
Diego Calderon ◽  
Anand Bhaskar ◽  
David A. Knowles ◽  
David Golan ◽  
Towfique Raj ◽  
...  

AbstractPrevious studies have prioritized trait-relevant cell types by looking for an enrichment of GWAS signal within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel cell types, and yet, hardly any work exists linking single-cell RNA-seq to phenotypes of interest. To address this deficiency, we present RolyPoly, a regression-based polygenic model that can prioritize trait-relevant cell types and genes from GWAS summary statistics and single-cell RNA-seq. We demonstrate RolyPoly’s accuracy through simulation and validate previously known tissue-trait associations. We discover a significant association between microglia and late-onset Alzheimer’s disease, and an association between oligodendrocytes and replicating fetal cortical cells with schizophrenia. Additionally, RolyPoly computes a trait-relevance score for each gene which reflects the importance of expression specific to a cell type. We found that differentially expressed genes in the prefrontal cortex of Alzheimer’s patients were significantly enriched for highly ranked genes by RolyPoly gene scores. Overall, our method represents a powerful framework for understanding the effect of common variants on cell types contributing to complex traits.


2017 ◽  
Author(s):  
Lingxue Zhu ◽  
Jing Lei ◽  
Bernie Devlin ◽  
Kathryn Roeder

Recent advances in technology have enabled the measurement of RNA levels for individual cells. Compared to traditional tissue-level bulk RNA-seq data, single cell sequencing yields valuable insights about gene expression profiles for different cell types, which is potentially critical for understanding many complex human diseases. However, developing quantitative tools for such data remains challenging because of high levels of technical noise, especially the “dropout” events. A “dropout” happens when the RNA for a gene fails to be amplified prior to sequencing, producing a “false” zero in the observed data. In this paper, we propose a Unified RNA-Sequencing Model (URSM) for both single cell and bulk RNA-seq data, formulated as a hierarchical model. URSM borrows the strength from both data sources and carefully models the dropouts in single cell data, leading to a more accurate estimation of cell type specific gene expression profile. In addition, URSM naturally provides inference on the dropout entries in single cell data that need to be imputed for downstream analyses, as well as the mixing proportions of different cell types in bulk samples. We adopt an empirical Bayes approach, where parameters are estimated using the EM algorithm and approximate inference is obtained by Gibbs sampling. Simulation results illustrate that URSM outperforms existing approaches both in correcting for dropouts in single cell data, as well as in deconvolving bulk samples. We also demonstrate an application to gene expression data on fetal brains, where our model successfully imputes the dropout genes and reveals cell type specific expression patterns.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


Sign in / Sign up

Export Citation Format

Share Document