scholarly journals Singing above the chorus: cooperative Princess cichlid fish (Neolamprologus pulcher) has high pitch

2016 ◽  
Author(s):  
Rachel K. Spinks ◽  
Moritz Muschick ◽  
Walter Salzburger ◽  
Hugo F. Gante

AbstractTeleost fishes not only communicate with well-known visual cues, but also olfactory and acoustic signals. Communicating with sound has advantages, as signals propagate fast, omnidirectionally, around obstacles, and over long distances. Heterogeneous environments might favour multimodal communication, especially in socially complex species, as combination of modalities’ strengths helps overcome their individual limitations. Cichlid fishes are known to be vocal, but a recent report suggests that this is not the case for the socially complex Princess cichlid Neolamprologus pulcher from Lake Tanganyika. Here we further investigated acoustic communication in this species. Wild and captive N. pulcher produced high frequency sounds (mean: 12 kHz), when stimulated by mirror images. In laboratory experiments, N. pulcher produced distinct two-pulsed calls mostly, but not exclusively, associated with agonistic displays. Our results suggest that male N. pulcher produce more sounds at greater durations than females. Thus, we confirm that the Princess cichlid does not produce low frequency sounds, but does produce high frequency sounds, both in combination with and independent from visual displays, suggesting that sounds are not a by-product of displays. Further studies on the hearing abilities of N. pulcher are needed to clarify if the high-frequency sounds are used in intra-or inter-specific communication.

Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2016 ◽  
Vol 17 (1) ◽  
pp. 66
Author(s):  
Maria Lina Silva Leite
Keyword(s):  

O objetivo deste estudo foi avaliar os efeitos do Método Pilates sobre a variabilidade da frequência cardíaca, na flexibilidade e nas variáveis antropométricas em indivíduos sedentários. O presente estudo contou com 14 voluntárias do sexo feminino, na faixa etária entre 40 e 55 anos, que realizaram 20 sessões de exercícios do Método Pilates, duas vezes por semana, com duração de 45 minutos cada sessão, dividida em três fases: repouso, exercício e recuperação. As variáveis estudadas foram: os dados antropométricos, flexibilidade avaliada utilizando o teste de sentar-e-alcançar com o Banco de Wells, e intervalos R-R usando um cardiotacômetro. O processamento dos sinais da frequência cardíaca foi efetuado em ambiente MatLab 6.1®, utilizando a TWC. Os dados coletados foram submetidos ao teste de normalidade de Shapiro Wilk e foi utilizado o teste de Wilcoxon e Anova One Way (α = 0,05). Nos resultados, observou-se que não houve diferenças significativas entre os valores antropométricos e de frequência cardíaca, porém houve aumento da flexibilidade com o treinamento. Comparando a primeira e a vigésima sessão com relação aos parâmetros low frequency (LF), high frequency (HF), e relação LF/HF, não houve diferença na fase de repouso e foram constatadas diferenças significativas de LF (p = 0,04) e HF (p = 0,04) na fase de exercício e diferença significativa de LF/HF (p = 0,05) na fase de recuperação. Comparando os parâmetros nos períodos de repouso, exercícios e recuperação durante a primeira sessão e durante a vigésima sessão, não houve diferença significativa nos parâmetros LF, HF e LF/HF. Pode-se concluir que, em relação à flexibilidade, foi observada uma melhora significativa, enquanto a análise da frequência cardíaca caracterizou a intensidade do exercício de 50% da capacidade funcional das voluntárias. Em relação aos parâmetros LF, HF e LF/HF foram observados um aumento da variabilidade da frequência cardíaca, provavelmente produto da atividade do Método Pilates. A Transformada Wavelet (TWC) mostrou-se um Método adequado para as análises da variabilidade da frequência cardíaca.Palavras-chave: frequência cardíaca, Transformada Wavelet, Pilates.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Sign in / Sign up

Export Citation Format

Share Document