scholarly journals Horizontal transfer in bacterial Methionyl tRNA synthetase is very common shown by Genus and phyla level phylogenetic analysis.

2016 ◽  
Author(s):  
Prabhakar Ghorpade ◽  
Avinash Pange ◽  
Bhaskar Sharma

Methionyl tRNA synthetase is single copy informational gene in Salmonella typhimurium. Informational genes are more conserved than operational genes. In this study we had analyzed HGT events within MetG sequences of different bacterial genera. A species tree based on 16srRNA sequences of the same genus was drawn evaluated against the generally accepted species tree of the bacteria. MetG phylogenetic tree was evaluated against the 16srRNAS tree and HGT event identified. Similarly phyla trees were made and HGT event identified. 24 HGT events were identified between genus and 11 within phyla. MetG is a considered as conserved gene finding so many HGT event in this gene indicate that horizontal gene transfer is very common in this gene. Manual tree making for phyla could help to understand phylogenetic relationships between very large trees.

2014 ◽  
Vol 83 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Maria Virginia Sanchez-Puerta

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.


2021 ◽  
Author(s):  
Jinjin Tao ◽  
Sishuo Wang ◽  
Tianhua Liao ◽  
Haiwei Luo

SummaryThe alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that nodulate legumes, supported by the nif and nod gene clusters. Recent environmental surveys show that Bradyrhizobium represents one of the most abundant free-living bacterial lineages in the world’s soils. However, our understanding of Bradyrhizobium comes largely from symbiotic members, biasing the current knowledge of their ecology and evolution. Here, we report the genomes of 88 Bradyrhizobium strains derived from diverse soil samples, including both nif-carrying and non-nif-carrying free-living (nod free) members. Phylogenomic analyses of these and 252 publicly available Bradyrhizobium genomes indicate that nif-carrying free-living members independently evolved from symbiotic ancestors (carrying both nif and nod) multiple times. Intriguingly, the nif phylogeny shows that all nif-carrying free-living members comprise a cluster which branches off earlier than most symbiotic lineages. These results indicate that horizontal gene transfer (HGT) promotes nif expansion among the free-living Bradyrhizobium and that the free-living nif cluster represents a more ancestral version compared to that in symbiotic lineages. Further evidence for this rampant HGT is that the nif in free-living members consistently co-locate with several important genes involved in coping with oxygen tension which are missing from symbiotic members, and that while in free-living Bradyrhizobium nif and the co-locating genes show a highly conserved gene order, they each have distinct genomic context. Given the dominance of Bradyrhizobium in world’s soils, our findings have implications for global nitrogen cycles and agricultural research.


BMC Genomics ◽  
2015 ◽  
Vol 16 (Suppl 10) ◽  
pp. S1 ◽  
Author(s):  
Ruth Davidson ◽  
Pranjal Vachaspati ◽  
Siavash Mirarab ◽  
Tandy Warnow

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ahmed M. Moustafa ◽  
Senthil Kumar Velusamy ◽  
Lidiya Denu ◽  
Apurva Narechania ◽  
Daniel H. Fine ◽  
...  

ABSTRACT Like the bacterial residents of the human gut, it is likely that many of the species in the human oral microbiota have evolved to better occupy and persist in their niche. Aggregatibacter actinomycetemcomitans (Aa) is both a common colonizer of the oral cavity and has been implicated in the pathogenesis of periodontal disease. Here, we present a whole-genome phylogenetic analysis of Aa isolates from humans and nonhuman primates that revealed an ancient origin for this species and a long history of association with the Catarrhini, the lineage that includes Old World monkeys (OWM) and humans. Further genomic analysis showed a strong association with the presence of a short-chain fatty acid (SCFA) catabolism locus (atoRDAEB) in many human isolates that was absent in almost all nonhuman OWM isolates. We show that this locus was likely acquired through horizontal gene transfer. When grown under conditions that are similar to those at the subgingival site of periodontitis (anaerobic, SCFA replete), Aa strains with atoRDAEB formed robust biofilms and showed upregulation of genes involved in virulence, colonization, and immune evasion. Both an isogenic deletion mutant and nonhuman primate isolates lacking the ato locus failed to grow in a robust biofilm under these conditions, but grew well under the carbohydrate-rich conditions similar to those found above the gumline. We propose that the acquisition of the ato locus was a key evolutionary step allowing Aa to utilize SCFAs, adapt, and modulate subgingival disease. IMPORTANCE There has been considerable interest in the impact of short-chain fatty acids (SCFAs) on inflammatory effects related to the microbiome. Here, we present evidence that SCFAs may also be important in disease by providing an energy source or disease-associated cue for colonizing pathogens. We propose that SCFAs allow Aggregatibacter actinomycetemcomitans (Aa) to adapt to the subgingival anaerobic environment, which is the site of human periodontitis. Under anaerobic, SCFA-rich conditions, human-derived Aa strains that possess butyrate metabolism genes form strong biofilms and upregulate virulence genes. Our phylogenetic analysis highlights a long history of evolution of Aa with its primate hosts and suggests that the acquisition of butyrate metabolism genes may have been a critical step in allowing Aa to colonize a new niche and cause disease in humans. Overall, this study highlights the important role that horizontal gene transfer may play in microbial adaptation and the evolution of infectious disease.


Author(s):  
M. E. Vladimirova ◽  
V. S. Muntyan ◽  
A. S. Saksaganskaya ◽  
B. V. Simarov ◽  
M. L. Roumiantseva

Genomic islands of closely related S. meliloti and S. medicae species were evaluated and homologous sequences were identified; it has been suggested that horizontal gene transfer occurs at homologous tRNA sites.


2020 ◽  
Author(s):  
Matthew A. Spence ◽  
Matthew D. Mortimer ◽  
Ashley M. Buckle ◽  
Bui Quang Minh ◽  
Colin J. Jackson

Serine protease inhibitors (serpins) are found in all kingdoms of life and play essential roles in multiple physiological processes. Owing to the diversity of the superfamily, phylogenetic analysis is challenging and prokaryotic serpins have been speculated to have been acquired from Metazoa through horizontal gene transfer (HGT) due to their unexpectedly high homology. Here we have leveraged a structural alignment of diverse serpins to generate a comprehensive 6000-sequence phylogeny that encompasses serpins from all kingdoms of life. We show that in addition to a central “hub” of highly conserved serpins, there has been extensive diversification of the superfamily into many novel functional clades. Our analysis indicates that the hub proteins are ancient and are similar because of convergent evolution, rather than the alternative hypothesis of HGT. This work clarifies longstanding questions in the evolution of serpins and provides new directions for research in the field of serpin biology.


1994 ◽  
Vol 91 (18) ◽  
pp. 8670-8674 ◽  
Author(s):  
V. Lamour ◽  
S. Quevillon ◽  
S. Diriong ◽  
V. C. N'Guyen ◽  
M. Lipinski ◽  
...  

2020 ◽  
Author(s):  
Zhengmi He ◽  
Pan Long ◽  
Fang Fang ◽  
Sainan Li ◽  
Ping Zhang ◽  
...  

Abstract Background: Amanitin-producing mushrooms, mainly distributed in the genera Amanita , Galerina and Lepiota , possess MSDIN gene family for the biosynthesis of many cyclopeptides catalysed by prolyl oligopeptidase (POP). Recently, transcriptome sequencing has proven to be an efficient way to mine MSDIN and POP genes in these lethal mushrooms. Thus far, only A . palloides and A. bisporigera from North America and A . exitialis and A. rimosa from Asia have been studied based on transcriptome analysis. However, the MSDIN and POP genes of many amanitin-producing mushrooms in China remain unstudied; hence, the transcriptomes of these speices deserve to be analysed. Results: In this study, the MSDIN and POP genes from ten Amanita species, two Galerina species and Lepiota venenata were studied and the phylogenetic relationships of their MSDIN and POP genes were analysed. Through transcriptome sequencing and PCR cloning, 19 POP genes and 151 MSDIN gened to encode 98 non-duplicated cyclopeptides, including α- amanitin, β-amanitin, phallacidin, phalloidin and 94 unknown peptides, were found in these species. Phylogenetic analysis showed that (1) MSDIN genes generally clustered depending on the taxonomy of the genus, while Amanita MSDIN genes clustered depending on the chemical substance; and (2) the POPA genes of Amanita , Galerina and Lepiota clustered and were separated into three different groups, but the POPB genes of the three distinct genera were clustered in a highly supported monophyletic group. Conclusions: These results indicate that lethal Amanita species have the genetic capacity to produce numerous cyclopeptides, most of which are unknown, while lethal Galerina and Lepiota species seem to only have the genetic capacity to produce α-amanitin. Additionally, the POPB phylogeny of Amanita , Galerina and Lepiota conflicts with the taxonomic status of the three genera, suggesting that underlying horizontal gene transfer has occurred among these three genera.


Sign in / Sign up

Export Citation Format

Share Document