scholarly journals trio-sga: facilitating de novo assembly of highly heterozygous genomes with parent-child trios

2016 ◽  
Author(s):  
Milan Malinsky ◽  
Jared T. Simpson ◽  
Richard Durbin

AbstractMotivationMost DNA sequence in diploid organisms is found in two copies, one contributed by the mother and the other by the father. The high density of differences between the maternally and paternally contributed sequences (heterozygous sites) in some organisms makes de novo genome assembly very challenging, even for algorithms specifically designed to deal with these cases. Therefore, various approaches, most commonly inbreeding in the laboratory, are used to reduce heterozygosity in genomic data prior to assembly. However, many species are not amenable to these techniques.ResultsWe introduce trio-sga, a set of three algorithms designed to take advantage of mother-father-offspring trio sequencing to facilitate better quality genome assembly in organisms with moderate to high levels of heterozygosity. Two of the algorithms use haplotype phase information present in the trio data to eliminate the majority of heterozygous sites before the assembly commences. The third algorithm is designed to reduce sequencing costs by enabling the use of parents’ reads in the assembly of the genome of the offspring. We test these algorithms on a ‘simulated trio’ from four hap-loid datasets, and further demonstrate their performance by assembling three highly heterozygous Heliconius butterfly genomes. While the implementation of trio-sga is tuned towards Illumina-generated data, we note that the trio approach to reducing heterozygosity is likely to have cross-platform utility for de novo assembly.

Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C Waldbieser ◽  
Ramey C Youngblood ◽  
Paul A Wheeler ◽  
...  

Abstract Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


2020 ◽  
Author(s):  
Graham Etherington

De novo assembly of 49 mustelid whole mitochondrial genomes


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Chen ◽  
Yixin Zhang ◽  
Amy Y. Wang ◽  
Min Gao ◽  
Zechen Chong

AbstractLong-read de novo genome assembly continues to advance rapidly. However, there is a lack of effective tools to accurately evaluate the assembly results, especially for structural errors. We present Inspector, a reference-free long-read de novo assembly evaluator which faithfully reports types of errors and their precise locations. Notably, Inspector can correct the assembly errors based on consensus sequences derived from raw reads covering erroneous regions. Based on in silico and long-read assembly results from multiple long-read data and assemblers, we demonstrate that in addition to providing generic metrics, Inspector can accurately identify both large-scale and small-scale assembly errors.


2018 ◽  
Author(s):  
Simon Roux ◽  
Gareth Trubl ◽  
Danielle Goudeau ◽  
Nandita Nath ◽  
Estelle Couradeau ◽  
...  

Background. Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. Methods. Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. Results. Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥ 10kb by 10 to 100-fold for low input metagenomes. Conclusions. PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.


2016 ◽  
Author(s):  
Alexander Seitz ◽  
Kay Nieselt

Most reconstruction methods for genomes of ancient origin that are used today require a closely related reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer approach, where multiple assemblies are generated in the first layer, which are then combined in the second layer. We used this two-layer assembly to generate assemblies for an ancient sample and compared the results to current de novo assembly approaches. We are able to improve the assembly with respect to the length of the contigs and can resolve more repetitive regions.


Author(s):  
Natascha van Lieshout ◽  
Martijn van Kaauwen ◽  
Linda Kodde ◽  
Paul Arens ◽  
Marinus J M Smulders ◽  
...  

Abstract Chrysanthemum is among the top ten cut, potted and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences and a genetic map, we assembled 3.1 Gb of its sequence into 9 pseudochromosomes, with an N50 of 330 Mb and BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95 074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution and history.


2020 ◽  
Vol 10 (9) ◽  
pp. 2911-2925
Author(s):  
llya Soifer ◽  
Nicole L Fong ◽  
Nelda Yi ◽  
Andrea T Ireland ◽  
Irene Lam ◽  
...  

Abstract In recent years, improved sequencing technology and computational tools have made de novo genome assembly more accessible. Many approaches, however, generate either an unphased or only partially resolved representation of a diploid genome, in which polymorphisms are detected but not assigned to one or the other of the homologous chromosomes. Yet chromosomal phase information is invaluable for the understanding of phenotypic trait inheritance in the cases of compound heterozygosity, allele-specific expression or cis-acting variants. Here we use a combination of tools and sequencing technologies to generate a de novo diploid assembly of the human primary cell line WI-38. First, data from PacBio single molecule sequencing and Bionano Genomics optical mapping were combined to generate an unphased assembly. Next, 10x Genomics linked reads were combined with the hybrid assembly to generate a partially phased assembly. Lastly, we developed and optimized methods to use short-read (Illumina) sequencing of flow cytometry-sorted metaphase chromosomes to provide phase information. The final genome assembly was almost fully (94%) phased with the addition of approximately 2.5-fold coverage of Illumina data from the sequenced metaphase chromosomes. The diploid nature of the final de novo genome assembly improved the resolution of structural variants between the WI-38 genome and the human reference genome. The phased WI-38 sequence data are available for browsing and download at wi38.research.calicolabs.com. Our work shows that assembling a completely phased diploid genome de novo from the DNA of a single individual is now readily achievable.


2018 ◽  
Vol 7 (21) ◽  
Author(s):  
Nicholas Sumpter ◽  
Margi Butler ◽  
Russell Poulter

Here, we present an updated genome assembly of the diploid chytrid fungus Batrachochytrium dendrobatidis strain RTP6. This strain is part of the global panzootic lineage (BdGPL) and was isolated in Dunedin, New Zealand.


2018 ◽  
Author(s):  
Chung-Tsai Su ◽  
Ming-Tai Chang ◽  
Yun-Chian Cheng ◽  
Yun-Lung Li ◽  
Yao-Ting Wang

AbstractSummary: De novo genome assembly is an important application on both uncharacterized genome assembly and variant identification in a reference-unbiased way. In comparison with de Brujin graph, string graph is a lossless data representation for de novo assembly. However, string graph construction is computational intensive. We propose GraphSeq to accelerate string graph construction by leveraging the distributed computing framework.Availability and Implementation: GraphSeq is implemented with Scala on Spark and freely available at https://www.atgenomix.com/blog/graphseq.Supplementary information: Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C. Waldbieser ◽  
Ramey C. Youngblood ◽  
Paul A. Wheeler ◽  
...  

AbstractCurrently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2N=64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.Article SummaryA de-novo genome assembly was generated for the Arlee homozygous line of rainbow trout to enable identification and characterization of genome variants towards developing a rainbow trout pan-genome reference. The new assembly was generated using the PacBio sequencing technology and scaffolding with Hi-C contact maps and Bionano optical mapping. A contiguous genome assembly was obtained, with the contig and scaffold N50 over 15.6 Mb and 39 Mb, respectively, and 95% of the assembly in chromosome sequences. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes.


Sign in / Sign up

Export Citation Format

Share Document