chytrid fungus
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 52)

H-INDEX

39
(FIVE YEARS 4)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262561
Author(s):  
Olivia Wetsch ◽  
Miranda Strasburg ◽  
Jessica McQuigg ◽  
Michelle D. Boone

Emerging infectious diseases are increasing globally and are an additional challenge to species dealing with native parasites and pathogens. Therefore, understanding the combined effects of infectious agents on hosts is important for species’ conservation and population management. Amphibians are hosts to many parasites and pathogens, including endemic trematode flatworms (e.g., Echinostoma spp.) and the novel pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Our study examined how exposure to trematodes during larval development influenced the consequences of Bd pathogen exposure through critical life events. We found that prior exposure to trematode parasites negatively impacted metamorphosis but did not influence the effect of Bd infection on terrestrial growth and survival. Bd infection alone, however, resulted in significant mortality during overwintering—an annual occurrence for most temperate amphibians. The results of our study indicated overwintering mortality from Bd could provide an explanation for enigmatic declines and highlights the importance of examining the long-term consequences of novel parasite exposure.


2021 ◽  
Author(s):  
Zachary Gajewski ◽  
Lisa A. Stevenson ◽  
David A. Pike ◽  
Elizabeth A. Roznik ◽  
Ross A. Alford ◽  
...  

2021 ◽  
Author(s):  
Allison Q Byrne ◽  
Anthony W Waddle ◽  
Veronica Saenz ◽  
Michel Ohmer ◽  
Jef R Jaeger ◽  
...  

Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus ( Batrachochytrium dendrobatidis , Bd), termed the Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the origin of Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swab and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs ( Rana catesbeiana ) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential ancestral population for Bd-GPL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaime Bosch ◽  
Barbora Thumsová ◽  
Naiara López-Rojo ◽  
Javier Pérez ◽  
Alberto Alonso ◽  
...  

AbstractMicroplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. We here assess whether synergies exist between this infectious disease and MP pollution by mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental approach showed compelling interactions between two emergent processes, chytridiomycosis and MP pollution, necessitating further research into potential synergies between these biotic and abiotic threats to amphibians.


2021 ◽  
Author(s):  
Rebecca J. Webb ◽  
Alexandra A. Roberts ◽  
Stephen Wylie ◽  
Tiffany Kosch ◽  
Luís Felipe Toledo ◽  
...  

Author(s):  
Ben C. Scheele ◽  
Matthijs Hollanders ◽  
Emily P. Hoffmann ◽  
David A. Newell ◽  
David B. Lindenmayer ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254439
Author(s):  
Onil Ballestas ◽  
Margarita Lampo ◽  
Diego Rodríguez

Chytridiomycosis, a disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been linked with the disappearance of amphibian populations worldwide. Harlequin toads (Atelopus) are among the most severely impacted genera. Two species are already considered extinct and most of the others are at high risk of extinction. The recent rediscovery of harlequin toad populations coexisting with Bd suggest that the pathogen can maintain enzootic cycles at some locations. The mechanisms promoting coexistence, however, are not well understood. We explore the dynamics of Bd infection in harlequin toads by modeling a two-stage host population with transmission through environmental reservoirs. Simulations showed that variations in the recruitment of adults and the persistence of zoospores in the environment were more likely to drive shifts between extinction and coexistence than changes in the vulnerability of toads to infection with Bd. These findings highlight the need to identify mechanisms for assuring adult recruitment or minimizing transmission from potential reservoirs, biotic or abiotic, in recovering populations.


2021 ◽  
Vol 7 (7) ◽  
pp. 522
Author(s):  
Koichi Goka ◽  
Jun Yokoyama ◽  
Atsushi Tominaga

While research on frog chytrid fungus Batrachochytrium dendrobatidis (Bd), an infectious disease that threatens amphibian diversity, continues to advance worldwide, little progress has been made in Japan since around 2010. The reason for this is, which we pointed out in 2009, that the origin of frog chytrid fungus may be in the East Asian region, including Japan based on the Bd ITS-DNA variation, and as few cases of mass mortality caused by this fungus have been observed in wild amphibian populations in Japan, the interest of the Japanese government and the general public in Bd has waned. However, we believe that organizing the data obtained so far in Japan and distributing the status of frog chytrid fungus in Japan to the world will provide useful insight for future risk management of this pathogen. We collected more than 5500 swab samples from wild amphibians throughout Japan from 2009 to 2010. Then, we investigated the infection status using the Nested-PCR method. We sequenced the obtained DNA samples and constructed a maximum-parsimony (MP) tree to clarify the phylogenetic diversity of Bd. We detected Bd infection in 11 (nine native and two alien) amphibian species in Japan and obtained 44 haplotypes of Bd ITS-DNA. The MP tree showed a high diversity of Bd strains in Japan, suggesting that some strains belong to Bd-GPL and Bd-Brazil. Except for local populations of the Japanese giant salamanders Andrias japonicus in Honshu Island and the sword tail newts Cynops ensicauda in Okinawa Island, the Bd infection prevalence in native amphibian species was very low. The alien bullfrog Aquarana catesbeiana had high Bd infection rates in all areas where they were sampled. No Bd infection was detected in other native amphibians in the areas where giant salamanders, sword tail newts, and bullfrogs were collected, suggesting that many native amphibians are resistant to Bd infection. The sword tail newt of Okinawa Island had both the highest infectious incidence and greatest number of haplotypes. The giant salamanders also showed relatively high infection prevalence, but the infected strains were limited to those specific to this species. These two Caudata species are endemic to a limited area of Japan, and it was thought that they may have been refugia for Bd, which had been distributed in Japan Islands for a long time.


Sign in / Sign up

Export Citation Format

Share Document