scholarly journals gmos: Rapid detection of genome mosaicism over short evolutionary distances

2016 ◽  
Author(s):  
Mirjana Domazet-Lošo ◽  
Tomislav Domazet-Lošo

AbstractProkaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Kyra Erckert ◽  
...  

AbstractThe emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthews Correlation Coefficient—MCC—for ProtT5 embeddings of 0.596 ± 0.006 vs. 0.608 ± 0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, independently of the performance measure applied (Spearman and Pearson correlation). Finally, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~ 20 k proteins) within 40 min on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA, and PredictProtein.


Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 155-170 ◽  
Author(s):  
Jacob Imbery ◽  
Chris Upton

African swine fever virus is a complex DNA virus that infects swine and is spread by ticks. Mortality rates in domestic pigs are very high and the virus is a significant threat to pork farming. The genomes of 16 viruses have been sequenced completely, but these represent only a few of the 23 genotypes. The viral genome is unusual in that it contains 5 multigene families, each of which contain 3-19 duplicated copies (paralogs). There is significant sequence divergence between the paralogs in a single virus and between the orthologs in the different viral genomes. This, together with the fact that in most of the multigene families there are numerous gene indels that create truncations and fusions, makes annotation of these regions very difficult; it has led to inconsistent annotation of the 16 viral genomes. In this project, we have created multiple sequence alignments for each of the multigene families and have produced gene maps to help researchers more easily understand the organization of the multigene families among the different viruses. These gene maps will help researchers ascertain which members of the multigene families are present in each of the viruses. This is critical because some of the multigene families are known to be associated with virus virulence.


2019 ◽  
Vol 5 ◽  
Author(s):  
Alexis Criscuolo

This paper describes a novel alignment-free distance-based procedure for inferring phylogenetic trees from genome contig sequences using publicly available bioinformatics tools. For each pair of genomes, a dissimilarity measure is first computed and next transformed to obtain an estimation of the number of substitution events that have occurred during their evolution. These pairwise evolutionary distances are then used to infer a phylogenetic tree and assess a confidence support for each internal branch. Analyses of both simulated and real genome datasets show that this bioinformatics procedure allows accurate phylogenetic trees to be reconstructed with fast running times, especially when launched on multiple threads. Implemented in a publicly available script, named JolyTree, this procedure is a useful approach for quickly inferring species trees without the burden and potential biases of multiple sequence alignments.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Jurate Daugelaite ◽  
Aisling O' Driscoll ◽  
Roy D. Sleator

Multiple sequence alignment (MSA) of DNA, RNA, and protein sequences is one of the most essential techniques in the fields of molecular biology, computational biology, and bioinformatics. Next-generation sequencing technologies are changing the biology landscape, flooding the databases with massive amounts of raw sequence data. MSA of ever-increasing sequence data sets is becoming a significant bottleneck. In order to realise the promise of MSA for large-scale sequence data sets, it is necessary for existing MSA algorithms to be run in a parallelised fashion with the sequence data distributed over a computing cluster or server farm. Combining MSA algorithms with cloud computing technologies is therefore likely to improve the speed, quality, and capability for MSA to handle large numbers of sequences. In this review, multiple sequence alignments are discussed, with a specific focus on the ClustalW and Clustal Omega algorithms. Cloud computing technologies and concepts are outlined, and the next generation of cloud base MSA algorithms is introduced.


2021 ◽  
Author(s):  
Céline Marquet ◽  
Michael Heinzinger ◽  
Tobias Olenyi ◽  
Christian Dallago ◽  
Michael Bernhofer ◽  
...  

Abstract The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations (embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Matthews Correlation Coefficient – MCC - for ProtT5 embeddings of 0.596±0.006 vs. 0.608±0.006 for ConSeq). Inputting the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art (SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, independently of the performance measure applied (Spearman and Pearson correlation). Lastly, we investigated binary effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competitive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method predicted SAV effects for the entire human proteome (~20k proteins) within 40 minutes on one Nvidia Quadro RTX 8000. All methods and data sets are freely available for local and online execution through bioembeddings.com, https://github.com/Rostlab/VESPA, and PredictProtein.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Marc-André Bossanyi ◽  
Valentin Carpentier ◽  
Jean-Pierre S Glouzon ◽  
Aïda Ouangraoua ◽  
Yoann Anselmetti

Abstract Predicting RNA structure is crucial for understanding RNA’s mechanism of action. Comparative approaches for the prediction of RNA structures can be classified into four main strategies. The three first—align-and-fold, align-then-fold and fold-then-align—exploit multiple sequence alignments to improve the accuracy of conserved RNA-structure prediction. Align-and-fold methods perform generally better, but are also typically slower than the other alignment-based methods. The fourth strategy—alignment-free—consists in predicting the conserved RNA structure without relying on sequence alignment. This strategy has the advantage of being the faster, while predicting accurate structures through the use of latent representations of the candidate structures for each sequence. This paper presents aliFreeFoldMulti, an extension of the aliFreeFold algorithm. This algorithm predicts a representative secondary structure of multiple RNA homologs by using a vector representation of their suboptimal structures. aliFreeFoldMulti improves on aliFreeFold by additionally computing the conserved structure for each sequence. aliFreeFoldMulti is assessed by comparing its prediction performance and time efficiency with a set of leading RNA-structure prediction methods. aliFreeFoldMulti has the lowest computing times and the highest maximum accuracy scores. It achieves comparable average structure prediction accuracy as other methods, except TurboFoldII which is the best in terms of average accuracy but with the highest computing times. We present aliFreeFoldMulti as an illustration of the potential of alignment-free approaches to provide fast and accurate RNA-structure prediction methods.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 637 ◽  
Author(s):  
Shin-Lin Tu ◽  
Jeannette Staheli ◽  
Colum McClay ◽  
Kathleen McLeod ◽  
Timothy Rose ◽  
...  

Base-By-Base is a comprehensive tool for the creation and editing of multiple sequence alignments that is coded in Java and runs on multiple platforms. It can be used with gene and protein sequences as well as with large viral genomes, which themselves can contain gene annotations. This report describes new features added to Base-By-Base over the last 7 years. The two most significant additions are: (1) The recoding and inclusion of “consensus-degenerate hybrid oligonucleotide primers” (CODEHOP), a popular tool for the design of degenerate primers from a multiple sequence alignment of proteins; and (2) the ability to perform fuzzy searches within the columns of sequence data in multiple sequence alignments to determine the distribution of sequence variants among the sequences. The intuitive interface focuses on the presentation of results in easily understood visualizations and providing the ability to annotate the sequences in a multiple alignment with analytic and user data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elena N. Judd ◽  
Alison R. Gilchrist ◽  
Nicholas R. Meyerson ◽  
Sara L. Sawyer

Abstract Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one. Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.


Sign in / Sign up

Export Citation Format

Share Document