scholarly journals Kinematic analysis of cell lineage reveals coherent and robust mechanical deformation patterns in zebrafish gastrulation

2016 ◽  
Author(s):  
David Pastor-Escuredo ◽  
Benoît Lombardot ◽  
Thierry Savy ◽  
Adeline Boyreau ◽  
Jose M. Goicolea ◽  
...  

AbstractDigital cell lineages reconstructed from 3D+time imaging data provide unique information to unveil mechanical cues and their role in morphogenetic processes. Our methodology based on a kinematic analysis of cell lineage data reveals deformation patterns and quantitative morphogenetic landmarks for a new type of developmental table. The characteristic spatial and temporal length scales of mechanical deformation patterns derived from a continuous approximation of cell displacements indicate a compressible fluid-like behavior of zebrafish gastrulating tissues. The instantaneous deformation rate at the mesoscopic level of the cell’s neighborhood is spatially and temporally heterogeneous. The robustness of mechanical patterns results from their cumulative history along cell trajectories. Unsupervised classification of mechanical descriptor profiles was used to assess the homogeneity of biomechanical cues in cell populations. Further clustering of cell trajectories according to their cumulative mesoscopic biomechanical history during gastrulation revealed ordered and coherent spatiotemporal patterns comparable to that of the embryonic fate map.

2021 ◽  
Author(s):  
David Pastor-Escuredo ◽  
Benoit Lombardot ◽  
Thierry Savy ◽  
Adeline Adeline Boyreau ◽  
Rene Doursat ◽  
...  

Abstract Digital cell lineages reconstructed from 3D+time imaging data of the developing zebrafish embryo are used to uncover mechanical cues and their role in morphogenesis. A continuous approximation of cell displacements obtained from cell lineages is used to assess tissue deformation during gastrulation. At this stage, embryonic tissues display multi-scale compressible fluid-like properties. The deformation rate at the mesoscopic level of the cell’s immediate surroundings appears noisy, in both space and time. The patterns identified by clustering the cells, according to the cumulative deformation rate along their trajectory throughout gastrulation, lead to a robust, ordered and coherent biomechanical map. The timing and amplitude of the biomechanical deformations provide a measurement of the phenotypic variability in small cohorts of specimens. We show that the biomechanical map matches the embryonic fate map of the zebrafish presumptive forebrain, in both wild type and Nodal pathway mutants (zoeptz57/tz57), where it reveals the biomechanical defects that lead to cyclopia.. The comparison of biomechanical patterns and the expression pattern of a transgenic reporter for the transcription factor goosecoid (gsc), supports the hypothesis that embryonic cells acquire, at an early developmental stage, a biomechanical signature that contributes to defining their fate.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S42-S43 ◽  
Author(s):  
Tetsuya Kominami

Sea urchin pluteus larvae contain dozens of pigment cells in their ectoderm. These pigment cells are the descendants of the veg2 blastomeres of the 60-cell stage embryo. According to the fate map made by Ruffins and Ettensohn, the prospective pigment cells occupy the central region of the vegetal plate. Most of these prospective pigment cells exclusively give rise to pigment cells. Therefore, specification of the pigment cell lineage should occur at some point between the 60-cell and mesenchyme blastula stage. However, the detailed process of the specification of the pigment lineage is unknown.When are pigment cells specified? Are cell interactions necessary for the specification? Do founder cells exist? To answer these questions, I treated embryos with Ca2+-free seawater during the cleavage stage and examined the number of pigment cells observed in pluteus larvae. Treatment at 5.5–8.5 h and especially 7.5–10.5 h postfertilisation markedly reduced the number of pigment cells. The decrease was statistically significant. On the other hand, the treatment at 3.5–6.5 h or 9.5–12.5 h never reduced the number of pigment cells. By examining the frequency of the appearance of embryos whose numbers of pigment cells were less than 20, it was also found that the numbers of pigment cells were frequently in multiples of 4. Embryos having 4, 8, 12, 16 and 20 pigment cells were more frequently observed. Statistics indicated that the frequency of appearance was not random. These results indicated that cell contacts are necessary for the specification of pigment cells and that the specification occurs from 7 to 10 h postfertilisation. The results also suggest that the founder cells, if they exist, divide twice before they differentiate into pigment cells.


1975 ◽  
Vol 26 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Moti Nissani

SUMMARYSix hundred and ten gynandromorphs were produced in which anXchromosome loss uncovered the vermilion mutation. The mosaic patterns observed indicate that wild type ocelli are incapable of kynurenine production and that, in addition to the eyes, postembryonic kynurenine producing cells originate from two separate regions of the blastoderm. The positions of these regions on the genetic fate map ofDrosophila melanogastercorrespond to the embryonic precursors which give rise to the kynurenine producing cells of the larval fat body and Malpighian tubes.


Author(s):  
Stanislaw Pabiszczak ◽  
Adam Myszkowski ◽  
Roman Staniek ◽  
Lukasz Macyszyn

The paper shows an idea of a new type of mechanical gear — the eccentric rolling transmission. The main parts of that transmission are rolling bearings, mounted eccentrically on the input shaft which cooperate with the special-shaped cam wheels mounted on the output shaft. The number of rolling bearings is equal to the number of cam wheels. On the basis of kinematic analysis equations of the curve which describe a shape of cam wheels were determined for two different cases: in the first one the directions of shafts rotations were opposite, and in the second they were the same. Kinematic analysis of the novel transmission was carried out to determine maximum gear ratio depending on the adopted input parameters. As a result of analyses a design procedure of the eccentric rolling transmission and CAD model were prepared.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


1997 ◽  
Vol 75 (5) ◽  
pp. 551-562 ◽  
Author(s):  
David J Kozlowski ◽  
Tohru Murakami ◽  
Robert K Ho ◽  
Eric S Weinberg

Determination of fate maps and cell lineage tracing have previously been carried out in the zebrafish embryo by following the progeny of individual cells injected with fluorescent dyes. We review the information obtained from these experiments and then present an approach to fate mapping and cell movement tracing utilizing the activation of caged fluorescein-dextran. This method has several advantages over single-cell injections in that it is rapid, allows cells at all depths in the embryo to be marked, can be used to follow cells starting at any time during development, and allows an appreciation of the movements of cells located in a coherent group at the time of uncaging. We demonstrate that the approach is effective in providing additional and complementary information on prospective mesoderm and brain tissues studied previously. We also present, for the first time, a fate map of placodal tissues including the otic vesicle, lateral line, cranial ganglia, lens, and olfactory epithelium. The prospective placodal cells are oriented at the 50% epiboly stage on the ventral side of the embryo with anterior structures close to the animal pole, and posterior structures nearer to the germ ring.


2014 ◽  
Vol 2 (4) ◽  
pp. 295-302 ◽  
Author(s):  
Shuai Guo ◽  
Hua-Wei Li ◽  
Jian-Cheng Ji ◽  
Zhi-Fa Ming

2012 ◽  
Vol 58 (6) ◽  
pp. 737-740 ◽  
Author(s):  
D.V. Kolesov ◽  
G.A. Kiselev ◽  
A.A. Kudrinskiy ◽  
I.V. Yaminskiy

Nanomechanical cantilever systems have a great potential in design of the new type of label-free imunnosensors. They are based on the conversion of free energy change of the surface layer of the receptor by the reaction of molecular recognition between the antigen and antibody into mechanical deformation of microcantilever. But the mechanisms of molecular interactions in the layer are still not clear.


2019 ◽  
Vol 256 ◽  
pp. 05004
Author(s):  
Sun Zihan ◽  
Yankang Ding ◽  
Yiqun Zhang ◽  
Dongwu Yang ◽  
Na Li

Firstly, based on the structural characteristics of a new type of hoop truss deployable antenna, this paper derives the motion transformation relation between two hoop modules by using the method of coordinate transformation, and establishes the general model for deployment kinematic analysis, which can be applied to analyze the position, velocity and acceleration of any point on the structure. Secondly, according to the relation between the driving cable and the hoop module, the motion planning of the hoop module is transformed into the motion control of the driving cable, which can realize the deploying position control of the antenna. Finally, numerical simulations show the control method can make the antenna smoothly deploy following the specified deployable motion.


Sign in / Sign up

Export Citation Format

Share Document