scholarly journals Deployment Kinematic Analysis and Control of a New Hoop Truss Deployable Antenna

2019 ◽  
Vol 256 ◽  
pp. 05004
Author(s):  
Sun Zihan ◽  
Yankang Ding ◽  
Yiqun Zhang ◽  
Dongwu Yang ◽  
Na Li

Firstly, based on the structural characteristics of a new type of hoop truss deployable antenna, this paper derives the motion transformation relation between two hoop modules by using the method of coordinate transformation, and establishes the general model for deployment kinematic analysis, which can be applied to analyze the position, velocity and acceleration of any point on the structure. Secondly, according to the relation between the driving cable and the hoop module, the motion planning of the hoop module is transformed into the motion control of the driving cable, which can realize the deploying position control of the antenna. Finally, numerical simulations show the control method can make the antenna smoothly deploy following the specified deployable motion.

2019 ◽  
Vol 16 (04) ◽  
pp. 1950012 ◽  
Author(s):  
Mircea Hulea ◽  
Adrian Burlacu ◽  
Constantin-Florin Caruntu

This paper details an intelligent motion planning and control approach for a one-degree of freedom joint of a robotic arm that can be used to implement anthropomorphic robotic hands. This intelligent control method is based on bio-inspired electronic neural networks and contractile artificial muscles implemented with shape memory alloy (SMA) actuators. The spiking neural network (SNN) includes several excitatory neurons that naturally determine the contraction force of the actuators, and unevenly distributed inhibitory neurons that regulate the excitatory activity. To validate the proposed concept, the experiments highlight the motion planning and control of a single-joint robotic arm. The results show that the electronic neural network is able to intelligently activate motion and hold with high precision the mobile link to the target positions even if the arm is slightly loaded. These results are encouraging for the development of improved biologically plausible neural structures that are able to control simultaneously multiple muscles.


2011 ◽  
Vol 58-60 ◽  
pp. 1306-1310
Author(s):  
Xiao Hui Xie ◽  
Cui Ma ◽  
Qiang Sun ◽  
Chang Jie Luo ◽  
Ru Xu Du

Force-Reflected Telepresence Teleoperation system has been widely used. Generally, force and torque sensors are installed on the robot to realize haptic perception. Control commands and force-reflected information from the robot are transmitted by communication link, such as internet. However, this structure not only brings difficulties of installation and commissioning, but also reduces the system flexibility and makes control more difficult. And it is prone to interfered in microenvironment. This paper presents a new type of energy transfer method to achieve it by power line instead of internet between the Master-slave Manipulators. This method achieves the consistency of force-reflected without using sensors to measure the conditions. In practical application, it requires to design an energy managed controller to insure the stability and obtain precision in synchronization between the master part and slave part. This paper gives the theory, the system structure and control method of force telepresence teleoperation based on power line.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093383
Author(s):  
Xue Du ◽  
Dong Chen ◽  
Zebo Yan

To satisfy the requirements of position control accuracy and allow unmanned underwater vehicle to maintain in the target zone with energy consumption as little as possible, this article proposes a flexible dynamic positioning strategy and control method, so as to extend the operating time of unmanned underwater vehicle dynamic positioning. Taking the distance between unmanned underwater vehicle and target point as the judgment condition for control method switching, this article delimits the working zone of different control levels for unmanned underwater vehicle and designs corresponding dynamic control methods for different working conditions. When unmanned underwater vehicle is far away from the target point, cuckoo search optimization method is proposed to plan the optimal motion scheme of energy consumption for the process of unmanned underwater vehicle reaching the target point. When unmanned underwater vehicle is close to the target positioning point, a flexible model predictive control method is proposed to reduce the energy consumption of unmanned underwater vehicle in the process of dynamic position control. The simulation case is designed to verify the flexible dynamic control capability of monomer unmanned underwater vehicle. The experimental results show that the strategy and control method proposed in this article, compared with the traditional proportion integration differentiation control method, could obtain the same control effect and reduce energy consumption, to achieve the purpose of prolonging the unmanned underwater vehicle operating time.


2011 ◽  
Vol 317-319 ◽  
pp. 685-689 ◽  
Author(s):  
Hai Tao Tang ◽  
Shun Pan Liang ◽  
Jian Tao Yao ◽  
Lian He Guo ◽  
Yong Sheng Zhao

The hardware control system of the 5-UPS/PRPU PMT (parallel machine tool) with redundant actuation was reconstructed to realize its hybrid force/position control, which was based on the primary “IPC+PMAC motion controller” system mode. Meanwhile, more perfect open type PMT control platform was constructed. Visual Basic language was used to realize the force servo control of the redundant limb and the relevant experiment was completed in the primary CNC system, combining with the PAMC motion controller library function. The results show that the force servo control strategy is exact and the newly designed hardware control system is effective, these results also provide feasible hardware basis and control method to realize the hybrid force/position control.


2014 ◽  
Vol 599-601 ◽  
pp. 1128-1134
Author(s):  
Xiang Hui Zhang ◽  
Zhan Wen Sun ◽  
Jin Zhao ◽  
Hua Dong Yu

To achieve the control of movement speed stability and location accuracy of two-dimensional motion platform, considered the movement characteristics of sliding table drive motor, a motion control method based on servo motor encoder feedback signal is proposed in this paper. By using real-time emulation platform of XPC target and related peripheral circuit, completed the construction of the motion control system. By analyzing the experimental data, proved the two-dimensional motion platform control system based on xPC target operation stable, meet the position control accuracy, motion response rapidly, and easy to adjust the control parameters requirements, and own high engineering practical value.


Author(s):  
Dong-Hun Lee ◽  
Duc-Quan Tran ◽  
Young-Bok Kim

In this study, a motion control problem for the vessels towed by tugboats or towing ships on the sea is considered. The towed vessels including barge ships are need to have assistance of tugboats. Combining two vessels, some work purposes in the sea or harbor area can be completed. In this study, the authors give newly developed mathematical model and control system strategy. Especially, the system model fully presenting the physical characteristics of two vessels are derived. For controlling the system effectively, it is considered that the towed vessel has no power propulsion system but the rudder is activated to improve the maneuverability. Considering the strong nonlinearities included in the vessel dynamics, the modelled system is presented by nonlinear system without linearization of nonlinear parameters. Thus, the control system for the towed vessel is designed based on the nonlinear control scheme. Exactly, the back-stepping control method is applied to its motion control. Also, the PID control method is applied for comparing with the proposed control strategy.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774970 ◽  
Author(s):  
Mehmet Emin Aktan ◽  
Erhan Akdoğan

Therapeutic exercises play an important role in physical therapy and rehabilitation. The use of robots has been increasing day by day in the practice of therapeutic exercises. This study aims to design and control a novel robotic platform named DIAGNOBOT for diagnosis and treatment (therapeutic exercise). It has three 1-degree-of-freedom robotic manipulators and a single grasping force measurement unit. It is able to perform flexion–extension and ulnar–radial deviation movements for the wrist and pronation–supination movement for the forearm. The platform has a modular and compact structure and is capable of treating two patients concurrently. In order to control the DIAGNOBOT, an impedance control–based controller was developed for force control, which was required for the exercises, as well as a proportional–integral–derivative controller for position control. To model the resistive exercise, an angle-dependent impedance control method different from traditional methods has been proposed. Experiments were made on five healthy subjects and it has been demonstrated that the proposed robotic platform and its controller can perform therapeutic exercises.


Sign in / Sign up

Export Citation Format

Share Document